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Robotic Vehicles (RV): Motivation

Robotic Vehicles (RV) are becoming popular in many
industrial sectors.




Perception in Robotic Vehicles (RV)
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Sensor Attacks Against Robotic Vehicles (RV)

GPS Spoofing.

Transmit malicious GPS Signals
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Tippenhauer et. al. On the requirements for successful GPS spoofing attacks. CCS’11



Sensor Attacks Against Robotic Vehicles (RV)

Signal Injection.

Optical, Magnetic or Acoustic noise
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Son et. al. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors. Usenix Security’2015




Sensor Attacks in the Real World

[ran-U.S. RQ-170 incident

UK Warship falsely pleased
near Russian Naval Base by
a GPS Cyber-attack
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Prior work

Invariant Based Detection Model based Detection

“Very Effective in Detecting Attacks”

Choi et. al., Detecting Attacks against Robotic Vehicles: a Control Invariant Approach, CCS’18
Quinonez et. al., SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants, Usenix Security’20



Detection is not Enough ...

Attack
Launched

Attack
Detected
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Choi et. al., Detecting Attacks against Robotic Vehicles: a Control Invariant Approach, CCS’18
Quinonez et. al., SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants, Usenix Security’20

10



Failsafe is not enough either...
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Our Goal

Recover from attacks and complete the mission without crashing the RV
Two Techniques for Attack Recovery:
1. PID-Piper [DSN’21 - Best paper award]

2. Delorean [Under submission]



Sensor
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RV under Attack
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PID Over-Compensates under Attacks

0.3
E Attacks _
= 0.2 .
. | ] I b
'E R ¥ - '{‘1' L
-‘: \ ‘ !’ ‘}“‘ ,’ v
4 (i ‘ | M| | [
. L RTAIR |

0 Ul ]

10 20 30 - 0
Time in Seconds

T

18



PID Over-Compensates under Attacks
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PID Over-Compensates under Attacks
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PID Over-Compensates under Attacks
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PID Over-Compensates under Attacks




PID Over-Compensates under Attacks
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Approach to design Recovery Techniques

Persistent error Erroneous Physical States Erroneous Actuator Signals

Recovery Requirements

R1: Handle persistent errors [ R2: Prevent erroneous actuator
erroneous physical states Signals




Feedforward Controller (FFC) Design
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Recovery Requirements _l

R1: Prevent erroneous R2: Prevent erroneous
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FFC design using LSTM Model

Feedforward Control (FFC) design
u(t) —f(x(t), w(t))
w — waypoints
x —{ gyro, mag, baro, gps, accelerometer, coefficients, ....., } 44 parameters
Feature Engineering — Reduced Feature set: 24 parameters

LSTM design
Correlate past and present sensors — Reject sensor perturbations



PID-Piper: Recovery Framework

Feedforward Control

State Estimation

Feedback Control

27



PID-Piper: Recovery Framework
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PID-Piper: Recovery Framework

Feedforward Control
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Experimental
Setup

mm PID-Piper Implementation

e FFC built using LSTM model (Python)
* Trained (Python)
e Plugged into Autopilot [ Firmware (C++)

L

e 30 RV mission profile data
e Circular, Polygonal, Straight line.
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Experimental
Setup
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PID-Piper: Metric for Mission Success

- GPS Offset ~5 m AL
- N




PID-Piper: False Positives

Analysis Type SRR [RAID’20] PID-Piper [This work]
Recovery Activated 20% 10%

Missions Failed 50% 0%

FPR 10% 0%

Number of missions failed
FPR =

Total number of missions



PID-Piper: Recovery under Attacks

Analysis Type SRR [RAID’20] PID-Piper [This work]
Mission Success 13% 83%

Mission Failed (no Crash)  50% 17%

Crash/stall 37% 0%

No.of missions with deviation < 10 meters

Mission Success = —
Total number of missions



PID-Piper: Recovery under Attacks

Analysis Type SRR [RAID’20] PID-Piper [This work]
Mission Success 13% 83%

Mission Failed (no Crash)  50% 17%

Crash/stall 37% 0%

Recovery was successful in 83% of the cases with O crashes.
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PID-Piper under Stealthy Attacks
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PID-Piper: Overheads

Analysis Type PID-Piper [This work]
CPU Overhead ~7%
Energy Overhead ~0.9%

Mission delays Negligible



PID-Piper: Summary

® PID-Piper: A framework to recover Robotic Vehicles from attacks \/jdeos
® Feed-forward Control to address overcompensation.

® 3 real and 3 simulated RV systems.

® 83% mission success from attacks, 0% false positives, limit stealthy attacks

Code: https://github.com/DependableSystemsLab/pid-piper

Pritam Dash, Guanpeng Li, Zitao Chen, Mehdi Karimibiuki, Karthik Pattabiraman,
PID-Piper: Recovering Robotic Vehicles from Physical Attacks, DSN, 2021.
Best Paper Award.



DelLorean: Multiple Sensors under Attack

>
Manipulate camera and LiDAR
GPS and Gyroscope

Cao et. al., Invisible to both Camera and Lidar, IEEE S&P 2021



DelLorean: Threat Model

Limited to a

Range

Cao et. al., Invisible to both Camera and Lidar, IEEE S&P 2021



DelLorean: Goal
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DelLorean: Identify the Sensor(s) under attack

Position Error (m)
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Delorean: Isolate Sensor(s) from Control Process
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Delorean: Substitute Input Sequence
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Delorean: Substitute Input Sequence

Position,

Record Historical States  Velocity,
Angular rates...

/_/\ Throttle

™
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Delorean: Substitute Input Sequence

Record Historical States Replay Historical States
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Delorean: Recovery with Replay

/—/R y = P (desired — actual)

x(ty —n) x(ty+ 1)
X(ty— 1) " x(t)
tO tn

Replay Historical States
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Delorean: Recovery with Replay
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Experimental
Setup




DelLorean: Mission Success Under Attacks (Percentage)

Nos. of attacked | SRR [RAID’20] PID-Piper Delorean
Sensors
64 100 100

1

2 20 20 100
3 0 100
4 88
5 0 0 82

DelLorean recovers the RVs in 94% of the cases overall (O crashes).

82% mission success even under attacks targeting all the sensors.




Delorean: Summary

Delorean: A framework to recover RVs from multi-sensor attack.

- Replays historic states to recover from attacks: single & multi-sensor
- Evaluated in 4 real RVs, and 2 simulated RVs

- 94% mission success, 82% when all the sensors are under attack
No other technique is able to recover from multi-sensor attacks beyond 2

- Performance overhead: 7.5%, Energy overhead: 19%

Under submission



Conclusion

Robotic Vehicles (RV) security is an important problem

- Used in many mission-critical and safety-critical settings
- Sensors can be modified/spoofed by attackers
- Need to ensure mission success despite attacks on RV

Two Techniques for recovering RVs from sensor attacks

- PID-Piper [DSN’21] :Single-sensor, but persistent attacks
- DelLoRean[submitted]: Multiple-sensor, but localized attacks
- Future work: Recovering RV platoons/drone swarms from attacks



