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Preface

This volume (12234) contains the proceedings of the 39th International Conference on
Computer Safety, Reliability and Security (SAFECOMP 2020) held in September
2020. Due to the COVID-19 pandemic, SAFECOMP took place, for the first time, as a
virtual conference on the Web, instead of being held in Lisbon, Portugal, as planned.
Since 1979, when the conference was established by the European Workshop on
Industrial Computer Systems, Technical Committee 7 on Reliability, Safety and
Security (EWICS TC7), it has contributed to the state of the art through the knowledge
dissemination and discussions of important aspects of computer systems of our
everyday life. With the proliferation of embedded systems, the omnipresence of the
Internet of Things and commodity of advanced real-time control systems, our depen-
dence on the safe and correct behavior is ever increasing. Currently, we are witnessing
the beginning of truly autonomous systems, perhaps with driver-less cars (the most
well-known to the non-specialist), where the safety and correctness of their computer
systems are already being discussed in the main-stream media. In this context, it is clear
that the relevance of the SAFECOMP conference series is increasing.

The International Program Committee, consisting of 57 members from 14 countries,
received 116 papers from 29 nations. Of these, 29 papers were selected to be published
in the SAFECOMP 2020 proceedings and presented at the conference, resulting in an
acceptance rate of 25%. The review process was thorough with each paper receiving at
least three reviews. The reviewers had ensured independence, preliminary online dis-
cussions, and a final discussion and selection phase, which took place during the IPC
meeting (held by video conference in April 2020) and was attended by more than 40
IPC members. Our warm thanks go to reviewers who offered their time and compe-
tence to ensure a high-quality program.

The conference featured three keynotes: “Towards AI trustworthiness” by Guil-
laume Soudain, Software and Airborne Electronic Hardware Expert in the Certification
Directorate of the European Aviation Safety Agency (EASA); “Safe Perception and AI
for Autonomous Driving” by Jonas Nilsson, Senior System Safety Architect at NVI-
DIA; “ISO TR 4804: Safety and Cybersecurity for Automated Driving Systems” by
Simon Fürst, Principal Expert of Autonomous Driving Technologies at BMW Group.

Despite being organized as an on-line event, SAFECOMP 2020 kept a single-track
format. This fostered academic exchange and discussions, providing opportunities for
participants to interact with presenters, and with each other, through discussion forums.
The conference also included a position papers session, giving the opportunity for new
ideas and work in progress to be presented and for the collection of valuable feedback
from the audience. The position papers proceedings are published in the HAL
repository.

As it has been the tradition for many years, the day before the main conference was
dedicated to workshops. This year there were four workshops: DECSoS – 15th
International Workshop on Dependable Smart Embedded Cyber-Physical Systems and



Systems-of-Systems; WAISE – Third International Workshop on Artificial Intelligence
Safety Engineering; DepDevOps – First International workshop on Dependable
Development-Operation Continuum Methods for Dependable Cyber-Physical Systems;
and USDAI – Underpinnings for Safe Distributed AI, of which the last two were new
workshops co-located with SAFECOMP. Papers from these are published in a separate
LNCS volume (12235).

We would like to express our gratitude to the many who contributed to make this
conference possible: the authors of submitted papers and the invited speakers; the
Program Committee members and external reviewers; EWICS TC7 headed by Fran-
cesca Saglietti; the supporting and sponsoring organizations; Friedemann Bitsch and
Pedro Ferreira as publication co-chairs; Erwin Schoitsch as workshop chair; Jérémie
Guiochet as position papers chair; Bernardo Ferreira as publicity chair; and the local
Organization Committee, led by Ibéria Medeiros, who took care of the arrangements
that made it possible to run the conference as a virtual event.

We hope that the reader will find these proceedings interesting and hope that
SAFECOMP 2021 will be once again a physical conference with possibly additional
virtual channels to reach an even greater audience.

June 2020 António Casimiro
Frank Ortmeier
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Towards AI Trustworthiness

Guillaume Soudain

Certification Directorate European Union Aviation Safety Agency, Germany
guillaume.soudain@easa.europa.eu

Abstract. Deep learning opens up promising prospects for aviation as in many
other fields. However, it raises the crucial question of the level of confidence
that can be placed in these techniques when used in safety-critical applications
and of their compatibility with strict certification requirements.

EASA has published its Artificial Intelligence Roadmap at the beginning of
2020, with a view to enabling the approval of AI-based solutions and with an
initial focus on machine learning techniques. Guillaume Soudain, Software
Senior Expert and AI project leader at EASA, will present the perspectives of
this roadmap.

The key questions we are trying to answer are: how to build public confi-
dence in artificial intelligence? How to prepare the certification of machine
learning solutions? And how to prepare the future of this rapidly evolving field
of computer science?



Safe Perception and AI for Autonomous
Driving

Jonas Nilsson

NVIDIA, Sweden
jonasn@nvidia.com

Abstract. Commercializing autonomous driving requires technical advance-
ments in many areas. To solve the technical challenges, these systems are
becoming more complex and are increasingly adopting AI technology. The
growing complexity of these designs poses many new challenges in assuring
safety. This talk will focus on approaches and challenges for designing and
validating safety-critical autonomous systems, with focus on perception and AI.



ISO TR 4804: Safety and Cybersecurity
for Automated Driving Systems

Simon Fürst

BMW, Germany
Simon.Fuerst@bmw.de

Abstract. The standard ISO TR 4804 will be newly released in Q3/20. It
provides an overview and guidance of the generic steps for developing and
validating a safe and secure automated driving system with the goal of achieving
a positive risk balance and the avoidance of unreasonable risk. This is derived
from basic principles of relevant worldwide publications. It considers safety by
design, verification, and validation methods for automated driving, focusing on
SAE level 3 and level 4 automation features of automated vehicles. In addition,
it outlines cybersecurity considerations in conjunction with safety aspects.

This new standard describes a framework for a harmonized safety design by
systematically breaking down safety principles into safety by design capabili-
ties, elements, and architectures. This generic methodology can be applied by
vehicle manufacturers and suppliers worldwide. The standard aims to support a
harmonization of different, currently already applicable industry approaches of
automated driving systems.

Additionally, the document gives guidance to system developers with a
dedicated safety lifecycle for DNNs used for automated driving systems. It
includes all relevant steps, such as definition and selection of data, architecture
of DNNs, their development and evaluation, and finally the monitoring and
deployment.
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Engineering of Runtime Safety Monitors
for Cyber-Physical Systems with Digital

Dependability Identities

Jan Reich1(B), Daniel Schneider1, Ioannis Sorokos1, Yiannis Papadopoulos2,
Tim Kelly3, Ran Wei3, Eric Armengaud4, and Cem Kaypmaz5

1 Fraunhofer IESE, Kaiserslautern, Germany
{jan.reich,daniel.schneider,ioannis.sorokos}@iese.fraunhofer.de

2 University of Hull, Kingston upon Hull, UK
y.i.papadopoulos@hull.ac.uk

3 University of York, York, UK
{tim.kelly,ran.wei}@york.ac.uk

4 AVL List GmbH, Graz, Austria
eric.armengaud@avl.com
5 AVL Turkey, Istanbul, Turkey
cem.kaypmaz@avl.com

Abstract. Cyber-Physical Systems (CPS) harbor the enormous potential for soci-
etal improvement in terms of safety, comfort and economic efficiency. However,
these benefits will only be unlocked if the safety of these systems can be assured
with a sufficient level of confidence. Traditional safety engineering and assurance
approaches alone cannot address the CPS-inherent uncertainties and unknowns
induced by openness and adaptivity. Runtime safety assurance approaches such
as Conditional Safety Certificates (ConSerts) represent novel means to cope with
CPS assurance challenges by introducing modular and formalized safety argu-
ments with variant support, thereby shifting the final safety certification step to
runtime.However, the systematic engineering of ConSerts at design-time is a com-
plex taskwhich, up to now, has not been sufficiently addressed.Without systematic
safety assurance at both design-time and runtime, CPS will hardly be assurable
with acceptable confidence given the uncertainties and unknowns. In this paper,
we present an engineering method for synthesizing ConSerts based on Digital
Dependability Identities (DDI). The approach is demonstrated for a cooperative
vehicle platooning function (CACC) from an industrial case study.

Keywords: Dynamic risk management · Runtime certification · Runtime safety
monitor ·Model-based safety engineering

1 Introduction

CPS Safety. Cooperative Cyber-Physical Systems (CPS) harbor enormous potential for
societal improvement in terms of safety, comfort and economic efficiency.However, CPS

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 3–17, 2020.
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functions will only be accepted by society if their safety is confidently assured. Justified
belief that systems are free from posing an unacceptable risk to their environment must
be created. Therefore, we need a safety argument, conveying a convincing story about
why evidence, in the form of safety analyses, designmeasures and verification/validation
results, supports the safety claim.

CPS Safety-related Uncertainties and Unknowns. Traditional safety assur-
ance approaches, e.g. the automotive functional safety standard ISO 26262, assume
that the complete set of evidence for supporting the safety claim can be generated at
design-time. The CPS-inherent characteristics of openness and adaptivity pose a signifi-
cant problem for traditional approaches because the amount of safety-relevant CPS con-
text changes can hardly be anticipated completely at development time. These changes
include CPS capability changes, triggered by e.g. sensor failure or changing cooperation
partner capabilities, and environmental changes, such as vision range restriction or road
friction changes due to weather. Thus, CPS complexity renders safety certification at
development time with acceptable performance much harder.

Safety@Runtime. Runtime safety assurance approaches such as Conditional Safety
Certificates (ConSerts) [1] represent novel means to cope with the CPS assurance chal-
lenges by shifting parts of the safety assurance process to the runtime, when all relevant
uncertainties and unknowns can be resolved. Specifically, ConSerts allow the defini-
tion of modular safety concepts describing CPS cooperation variants. By making the
guaranteed and demanded safety interface to other CPS systems and the environment
explicit, these modular safety concepts are certifiable at design-time. At runtime, CPS
constituents resolve those open ends by checking the compatibility of the safety interface
and by monitoring runtime evidence required for safe operation.

Problem. ConSerts rely on solid design-time safety engineering and only shift the min-
imum necessary safety activities to runtime, i.e. safety interface matching and runtime
evidence monitoring. Only limited research has yet examined this design-time engineer-
ing backbone; requirements for a concrete ConSerts-based engineering method remain
an open research topic. Key aspects of such a method are a) a comprehensive assurance
argument combining development time safety assurance with runtime safety assurance
and b) a systematic design of ConSerts out of established development time safety
artifacts.

Solution. Digital Dependability Identities (DDI) are an overarching solution framework
for engineering dependable CPS, developed in the H2020 DEIS project. In this paper,
we demonstrate the application of the DDI framework for an industrial case study of
a cooperative platooning function, specifically focusing on the transition from design-
time safety models (Design-time DDIs) to runtime safety models (ConSerts, which serve
as Runtime DDIs). To that end, in Sect. 2, we introduce the overall idea of the DDI
engineering framework for design-time and runtime DDIs. In Sect. 3, the framework is
applied and discussed for a CPS-based platooning function. Section 4 discusses related
work and Sect. 5 concludes the paper’s scientific contribution.
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2 Runtime DDI Engineering Approach Overview

This section introduces the DDI engineering approach for seamless dependability engi-
neering of CPS functions by creating design-time DDIs and transforming them into
runtime DDIs that are used to dynamically assure CPS safety at runtime.

2.1 What Are Digital Dependability Identities (DDI)?

DDI Definition. Afundamental problemof current dependability engineeringprocesses
hampering effective assurance lies in the fact that safety argument models are not for-
mally related to the evidencemodels supporting the claim. Such evidencemodels include
hazard and safety analysis models and dependability process execution documentation.
As such artifacts refer to the same system and therefore are naturally interrelated with
each other, we claim this should also be the case for the system’s model-based reflec-
tion: The Digital Dependability Identity (DDI) [2]. By establishing this kind of trace-
ability, DDIs represent an integrated set of dependability data models (i.e. evidence),
generated by engineers and reasoned upon in dependability arguments (i.e. how are
claims supported by evidence). A DDI is, therefore, an evolution of classical modular
dependability assurance models, allowing for comprehensive dependability reasoning
by formally integrating several separately defined dependability aspect models. DDIs
are produced during design, certified on system/component release, and then maintained
over the system/component lifetime.

DDI Contents. A DDI contains information that uniquely describes the dependability
characteristics of a system or component. DDIs are formed as modular assurance cases,
are composable and can be synthesized to create more complex DDIs from the DDIs of
constituent systems and system components. The DDI of a system contains a) claims
about the dependability guarantees given by a system to other systems b) supporting
evidence for the claims in the form of various models and analyses and c) demands from
other connected systems being necessary to support the claims.

Previous Work on DDIs. In the first phase of the DEIS project, the focus has been to
integrate various state-of-the-art design-time safety and security engineering aspects
together into an exchange format, the Open Dependability Exchange Meta-Model
(ODE), used as the blueprint for DDIs. Accompanying engineering methods and
tools have been developed to enable distributed dependability engineering in multi-
tier integrator-supplier scenarios [3]. In [4], we showed, for an industrial railway use
case, how to use design-time DDIs to automatically verify safety requirements with
component fault trees and model-based evidence lifecycle documentation.

Runtime DDIs. To cope with the openness and adaptivity CPS challenges safely, sys-
tems can be engineered in a way that enables them to assure dependability at runtime on
their own. Consequently, runtime DDIs need to be developed with appropriate model
contents and runtime mechanisms to enable dependable integration and cooperation at
runtime. The upcoming sections take the approach outlined in [4] to engineer design-
time DDIs as a basis and add on top the aspect of how to address openess and adaptivity
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challenges. Therefore, the specific content additions of runtime DDIs are explained,
exemplified for a cooperative platooning application and a process for their systematic
derivation is proposed.

2.2 Runtime DDI Engineering Approach

Being equipped with knowledge about high-level DDI contents, this section describes
from a bird’s eye view, how the DDI Dependability Engineering Framework bridges
the gap between a CPS use case description and its dependable operation at runtime.
Figure 1 visualizes the principal building blocks of CPS dependability assurance.

CPS             
Use Case

DDI Dependability Engineering Framework

Design Time DDI Run me DDI

Dependability 
Assurance 
Argument

Model-based 
Evidence

Dependability 
Claim

Condi onal 
Dependability 

Cer ficate

Run me 
Evidence 
Monitor

RT 
DDI

Dynamic CPS Safety 
Assurance @Run me

RT 
DDI

Fig. 1. DDI dependability engineering framework overview.

CPS Functionality. The starting point for all dependability assurance activities is the
description andplanningof the functionality that theCPS shall render for its stakeholders,
which may be either direct system users, companies or even the society. An essential
property of a CPS function is that it is executed on multiple independent systems leading
to a required distribution of dependability assurance overmultiple systemmanufacturers.
For example, a platooning CPS function is executed on multiple trucks of potentially
different manufacturers. Enabling cooperative function execution while still allowing
decoupled development is only possible by making development and runtime execution
interfaces explicit for both functional and quality aspects. Concretely, structural and
behavioral aspects of the intendedCPS functionmust bemade explicit alongwith assured
constraints regarding their quality bounds.

Dependability Claim. DDIs are concerned with the comprehensive and transparent
assurance of dependability claims. Each assurance activity and each artifact contained in
aDDI ismotivated by a root dependability claim defining risk reduction for a dependabil-
ity property such as safety, security, availability or reliability. The definition of acceptable
risk reduction is typically derived from domain-specific risk management standards tar-
geting different risk causes such as functional safety causes (e.g. ISO 26262), causes
related to functional insufficiencies and foreseeable misuse (e.g. SOTIF PAS 21448)
or causes due to cyber-security threats (e.g. ISO/SAE 21434). These standards contain
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requirements for assessing risk criticality and reducing risks to an acceptable level. Note
that existing standards do not specifically consider CPS challenges as of now. However,
the DDI framework has been defined generally enough to be open for structured exten-
sion with contents from future risk management standards specific for CPS assurance
challenges.

Design-Time Dependability Assurance. Having a dependability claim to be assured for
theCPS function, riskmanagement activitiesmust then be systematically planned. These
activities create necessary evidence for supporting the system engineers’ reasoning that
the dependability claim holds for the developed system/CPS. For both risk manage-
ment planning and dependability assessment purposes, an explicit argument inductively
relates created evidence to the top-level claim through layers of argumentation. While
the performed activities and produced artifacts vary depending on the kind of risk that is
being managed, argumentation supported by evidence is mandatory for all risks. DDIs
deal with dependability risks, thus the currently supported design-time DDI assurance
activities and evidence focus on well-established dependability methods such as haz-
ard and risk analysis, safety and security analyses, safety design concepts, validation,
and verification. These activities are effective in demonstrating dependability of closed
embedded systems, unrelated to the CPS challenges. In addition, reliance on model-
based approaches already compensates for the increasing complexity of closed systems.
Thus, we believe model-based development is also necessary for assuring CPS.

Runtime Dependability Assurance. The open and adaptive nature of CPS, combined
with their increased need for environmental operational awareness to render optimal
functionality, increases their complexity tremendously. To assure with sufficient con-
fidence that CPS behavior is dependable in all situations, dependability assessment of
those situations is mandatory. A common way to simplify this process is to build the
system using worst-case assumptions about the environment, specific for the managed
risk. Thus, we only look at the most critical situations and constrain system behavior
to be dependable in those situations. The problem with this strategy is that worst-case
assumptions lead to performance loss. An alternative to unacceptable performance due to
design-time worst-case assumptions is to enable the CPS to reason about dependability
at runtime. This alternative involves determining the worst case of the current opera-
tional situation instead of acting according to the worst case of all possible situations.
This approach avoids the commonly known state-space explosion problem but demands
engineering dependability intelligence into the CPS. Such dependability intelligence
builds upon the design-time assurance case by equipping a system with pre-certified
knowledge about dependability guarantees it can offer and dependability demands it
needs from other systems or the environment to render those guarantees. Additionally,
the dependability intelligence needs to monitor both CPS and environment for changes
(Runtime Evidences) that affect dependability. Based on such changes, it can reason
about possible CPS configurations leading to dependable CPS behavior in different sit-
uations. Summarizing, runtime DDIs are a reduced form of pre-certified design-time
dependability assurance cases, containing only those dependability artifacts and rea-
soning intelligence required for monitoring dependability-relevant context changes and
reacting to them in a dependable way.
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Runtime DDI Engineering. Regarding the engineering of concrete runtime DDIs, the
DEIS consortium focuses on the usage of Conditional Safety Certificates (ConSerts) [1]
for expressing modular, variable and fully formalized safety concepts including required
runtime evidences enabling safety guarantee-demand matching and thus a basic form
of dependability reasoning at runtime. For monitoring CPS state and environment, the
consortium explored state-based probabilistic methods such as Bayesian Networks [5].
In Sect. 3, we focus on explaining concretely for the platooning use case, how its design-
time DDI looks like and how the ConSert part of runtime DDIs is systematically synthe-
sized. Note that although Sect. 3 demonstrates the usage of DDIs for assuring a safety
claim, the overall engineering procedure is similar for other dependability properties.

3 Runtime DDI Engineering for Platooning

This section exemplifies the runtime DDI engineering activities and artifacts needed to
fulfill the safety claim for a platooning function executed on a CPS.

3.1 Platooning Use Case Description

Function and Constraints. The goal of truck platooning or more general cooperative
adaptive cruise control (CACC) is to reduce fuel consumption of all involved vehicles by
maintaining reduced air drag at small inter-vehicular distances. Platooning is particularly
relevant for heavy-duty trucks due to their high air resistance area and thus hold high
potential for fuel economy. Since humans have limited reaction capabilities compared
to automated systems, they cannot safely drive at distances where air drag is reduced
through slipstream.The example in this paper is limited to automated longitudinal control
of a two-vehicle platoon. The platoon’s leader truck is assumed to be driven by a human
and the follower truck’s longitudinal motion is controlled by the platooning system,
which is executed in a distributed CPS fashion on both vehicles.

Safe Nominal Behavior. For human-driven vehicles or ADAS, it is often the correct
realization of the driver’s intent that defines safe behavior for control software. For
highly and fully automated systems, this is more complex due to many aspects of the
environment that have to be considered in the safe nominal behavior specification. The
currently most comprehensive safe nominal behavior definition for highly automated
vehicles has been published by Intel/Mobileye in 2017 coined Responsibility Sensitive
Safety (RSS) [6]. In this paper, we use the RSS formalization of a longitudinal safe
distance as safe nominal behavior definition (see Eq. (1)).

dsafe =
[
vFρ + 1

2
amax,acc,Fρ2 +

(
vF + ρamax,acc,F

)2
2amin,brake,F

− v2L
2amax,brake,L

]
+

(1)

Effectively, the first three terms together represent the stopping distance of the follower
vehicle considering a) a reaction distance (vF : follower speed, ρ: reaction time), b)
an acceleration distance if the follower constantly accelerates with amax,acc,F during
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reaction time and c) the follower braking distance, when the follower constantly brakes
with deceleration amin,brake,F . To compute the safe distance, we subtract the leader
braking distance with leader speed vL and constant leader deceleration amax,brake,L from
the follower stop distance. Note that the leader vehicle driver’s reaction time is not
factored in, because, in this time span, the motion state of the platoon does not change
and is therefore irrelevant for safety assurance.

Influences on Safe Distance. By looking at Eq. (1), we observe that the safe distance
is dynamic, as it depends on the right-hand-side variables. Within the platoon context,
such changes can either be triggered in the environment, e.g. road surface conditionsmay
affect theminimum andmaximumdeceleration capabilities of both trucks. Alternatively,
theWi-Fi communication quality is affected by weather conditions such as precipitation
influencing follower reaction time. In contrast, the safe distancemay be affected by CPS-
internal states such as vehicle mass (very dynamic specifically for trucks) or quality of
vehicle speed determination. In summary, the CPS function description together with a
safe nominal behavior specification provide sufficient information to start DDI-driven
safety assurance.

3.2 Design-Time Safety Engineering with DDIs

This section describes how a platooning system safety assurance case is synthesized for
the platooning function and finally captured in a design-time DDI.

CPS Safety. The design-time DDI depicted in Fig. 2 by definition contains a top-level
safety claim, for which a safety assurance argument is developed. The argument asso-
ciates all safety-related activities and their evidence with each other to create justified
belief in the validity of the safety claim. Since safety is a system property, the design-
time DDI necessarily spans the whole collaboration space on which the CPS function is
executed (i.e. leader and follower roles). Note that we refer to roles instead of systems
here to highlight the fact that at this point, we are dealing with functional entities and not
with concrete constituent systems realizing these functional entities. Conceptually, one
truck can have the main responsibility for achieving safety in the end, but the top-level
safety claim has to be necessarily defined and analyzed for the entire CPS. To illustrate
this point, we note that the inter-truck distance as the main safety property to be assured
cannot be interpreted for a single truck alone. Rather, a distance can only be defined
between multiple objects and therefore is necessarily a property of the object group or
in the platooning context, the whole platoon. The goal of CPS safety engineering is thus
to decompose a CPS safety claim into a set of safety requirements for each cooperation
role that allows the cooperative fulfillment of the safety claim.

Hazard and Risk Assessment (HARA). Following theRSSdefinition of a safe distance,
the CPS state that poses safety risk (hazard) is existent if the actual distance is lower than
the safe distance. This observation is straight-forward for the hazard in a longitudinal
direction. In general, a more systematic hazard and risk assessment (HARA) should be
performed for all potentialCPSbehaviors in the intendedoperational environment.Given
a safe nominal behavior specification, conventional HARA methods are applicable for
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CPS. For determining the worst-case criticality of the hazard in all situations, we adopt
the ASIL classification from ISO 26262, which yields an ASIL D criticality. Thus, the
platoon’s safety goal is specified as “Safe Truck Distance is not violated during platoon
driving (ASIL D)”.

Functional Architecture. After HARA, functional cause-effect relationships that lead
to a violation of the safety goal must be analyzed. To obtain sufficient completeness
regarding potential violation causes, requires systematic safety analysis using a func-
tional network linking functional blocks and their cause-effect relations. Conventionally,
functional models contain data and information flow connectors between sensing, con-
trol and actuation functions. In [7], an approach for the service-oriented definition of
cause-effect relationships has been presented, which better supports the derivation of
modular failure mode interfaces than purely dataflow-oriented models. As we will see,
modularity is a necessary property for the derivation of runtimeDDIs. Therefore, service-
oriented functional networks (e.g. expressed in languages such as SysML) are a suitable
basis for CPS safety analysis. The application service of a platoon is “Safe Platoon
Driving with defined performance”, which uses actuation services like “Truck Distance
Realization” or functional services such as “Follower Brake Distance Computation”,
which use sensing services such as “Follower Speed Provision”.

Platooning  
Use Case

Design Time DDI

Model-Based Risk Reduc on Evidence

Safety Assurance Argument (SACM)

Hazard & Risk 
Assessment

Claim Platooning System is sufficiently safe.

Safety 
Analysis

Func onal 
Architecture

Safety 
Concept

HARA Model
Func onal 
Net (e.g. 
SysML)

Service-
oriented 

CFT

SACM 
Model

Fig. 2. Contents of a design-time DDI.

Safety Analysis. Starting from a CPS-level hazard, causes leading to this hazard should
be systematically identified deductively or inductively. There are several different types
of causes to be analyzed, e.g. causes related to a) systematic software faults and random
hardware failures, b) functional insufficiencies or foreseeable misuse or c) malicious
cyber-security threats. For each cause type, there are specific analysis techniques, e.g.
fault trees, failure mode and effect analysis (FMEA), Markov chains or Systems The-
oretic Process Analysis (STPA). For platooning safety analysis, we used an extension
of component fault trees coined Service-Oriented Component Fault Trees (SCFT) [8].
Unlike dataflow-oriented deductive safety analyses starting at the actuators, SCFT anal-
ysis starts at the entity with the application context knowledge enabling a derivation of
modular interface failure modes. SCFTs build on a stepwise deductive HAZOP guide-
word interpretation for functional service hierarchies. Example failure modes for a first
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analysis step in the context of the platooning safety goal are “Too Low Computed {reac-
tion, acceleration, braking} Distance” as these can lead to a violation of the safety
goal.

Safety Goal Safe Truck 
distance is not violated 

during Platooning (ASIL D)

Context Safe Truck 
Distance defini on 

according to RSS

Req0 All relevant 
failure modes have 

been iden fied.

Process 
SCFT 

Analysis

Req1 Too Low 
Follower Reac on 
Distance shall 

be avoided (ASIL D).

Assump on 
Assumed worst-cases 

are valid for opera-
onal context

Context Defini on 
of Platooning 

Func on + Op. 
Context

Strategy Argument over 
constraining influence parameter 
failure modes either worst-case 
or measure them with integrity.

Req2 Too Low Follower 
Accelera on Distance12 , , 2 shall be 

avoided (ASIL D).

Req3 Too Low Follower 
Brake Distance+ , , 22 , , shall 

be avoided (ASIL D).

Req4 Too High Leader 
Brake Distance22 , , shall be 

avoided (ASIL D).

Concept Leader 
Speed Integrity 

Monitor
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WC Assump.
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Model

Evidence 
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Net
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Truck Distance shall be 

avoided (ASIL D)

Concept Distance 
Realiza on Error 

WC Assump.

Fig. 3. Platooning functional safety concept.

Safety Concept. After the identification of all functional failure modes, the next step
is the creation of a functional safety concept mitigating the propagation from causes to
safety goal violation. Figure 3 presents the safety concept documented in an adapted
notation based on the Goal Structuring Notation (GSN) [9]. In general, a safety concept
provides the rationale for safety measures (depicted as Concepts), which add additional
design elements formitigating critical failuremodes, i.e. lowering their occurrence prob-
ability by failure detection and appropriate transition to a safe state. Note that theConcept
elements are placeholders for safety argument fragments arguing the requirement sat-
isfaction either through the appropriate choice of worst-case assumptions or dynamic
monitoring of measurement integrity. The integrity of safety measure implementation is
dependent on the risk criticality of the hazardous event, which originates from theHARA
(in our case ASIL D). The safety concept should give a comprehensive argument along
with evidence about why a safety goal cannot be violated given the chosen safety mea-
sures. In the DDI engineering approach, this evidence is explicit by linking all artifacts
such as functional net, the SCFT model along with its analysis results, the definition of
the safe nominal behavior and the operational context to the assurance claims they should
fulfill (e.g. Req0). Together with the evidence artifacts, the safety concept is expressed
in a comprehensive safety case representing the design-time DDI’s backbone. The DDI
formalism for expressing assurance cases is the Structured Assurance Case Metamodel
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(SACM) [10], which is a successor of GSN and has been recently standardized by the
Object Management Group (OMG).

CPS Hazard Mitigation Strategies. To derive concrete safety measures to adequately
mitigate platooning failure modes (see requirements Req1–Req5 in Fig. 3) there are two
potential strategies: On the one hand, we can postulate and use worst-case assumptions,
which must be valid for the intended operational context. For instance, if we assume
the maximum leader deceleration to be bound by 9,81 m/s2 (=1 g), we have to provide
an additional argument that justifies the assumption’s validity, e.g. through physics rea-
soning. Worst-case assumptions are a classical means to simplify safety assurance at
the cost of under-performance in non-worst cases. For instance, we can consider the
larger-than-necessary controlled truck distance for the majority of operation time the
lead driver does not perform emergency braking. On the other hand, we can monitor
the variables of interest at runtime to replace the worst-case value with the actual run-
time value (see Fig. 4, left). For instance, a common established measure in vehicles is
speed integrity monitoring. In order to use runtime monitors safely, we have to design
them with the same integrity as the hazard they should mitigate. This means, that an
assurance argument has to be developed for the correct provision of a “situation-specific
worst-case speed value bound”, which effectively means that the speed provision error is
constrained by employing adequate redundancymechanisms developedwith appropriate
safety processes.

In summary, this section led through the systematic engineering of a design-time
DDI for the platooning function leading to a justified functional safety concept. The
next step is to modularize and abstract this safety concept into runtime DDIs that can be
deployed to concrete trucks, enabling dynamic safety assurance for a platoon.

3.3 Runtime Safety Model Derivation

In this section, CPS assurance challenges and potential solutions principles are presented
first. Afterward, the design-time DDI of the CPS-based platooning function is system-
atically transformed into ConSerts, which build the fundamental basis of a runtime DDI
suitable for dynamic safety assurance of a CPS at runtime.

CPS Assurance Challenges. The major challenge of safety assurance of CPS func-
tionality is complexity. More specifically, this comparative increase in complexity stems
from twoCPS-inherent characteristics: open context and adaptivity.Open contextmeans
that CPS constituent systems are typically developed independently, but should, in the
end, provide a common functionality at runtime. Thus, the concrete nature of potential
cooperation partners is intentionally left open for the sake of flexibility. In contrast, adap-
tivity means that CPS need to adapt themselves to changing context conditions safely.
Although adaptivity was already required for partly automated systems, the amount
of required situational awareness has tremendously increased for fully automated CPS
functionality. For safety assurance, both open context and adaptivity are hard problems,
because safety as a property of the entire CPS system group needs to be decomposed
onto independently developed constituent systems, which finally need to collaboratively
adapt safely to changing context.
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Open Context Solution. Complexity is not a newphenomenon in the domain of systems
and software engineering: A proven solution principle for tackling system-level com-
plexity is Divide-and-Conquer (D&C). The idea behind D&C is to iteratively identify
a service interface and decompose the solution across its boundary. If such an interface
exists, both user and provider of the interface can be developed independently, thereby
promoting design-timemodularity and runtime compatibility.To apply D&C to the CPS’
open context, we need an explicit and semantically complete interface definition a) for
functionality aka services being provided or required at that interface and b) for safety
guarantees and demands associated to the service interface. In Fig. 3, the mentioned
service and safety interfaces emerge immediately as the Concepts are deployed to our
envisioned systems Leader Truck and Follower Truck (see Fig. 4, right). The deploy-
ment of safety measures is a critical decision with impact, as it determines a) the system
role that is finally responsible for achieving the CPS safety at runtime and b) the safety
guarantee/demand interface required between trucks, which is directly related to the
effort for defining the interface. We found in past projects that minimizing the number
of required services and associated safety demands is a good rule of thumb for deploy-
ment. In our platoon, the follower truck gets the overall safety responsibility, mainly
because it is the only vehicle that can transition the platoon to a safe state in case the
communication link is down. We cannot rely on the leader truck’s human driver in this
regard. In contrast, the leader truck can provide the leader’s current speed with much
better quality from its internal sensors than measuring it remotely in the follower. In
summary, by employing the D&C principle on the design-time DDI, safety concepts
can be modularized by deploying the safety measures to the CPS cooperation roles to
be implemented by specific systems.

Fig. 4. Left: platoon variant analysis, Right: modular platoon safety concept.
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Context Adaptivity Solution. Cooperation-partner diversity and context-dependent
optimal performance necessitates context adaptivity. For instance, different truckmodels
from different brands may have different functional capabilities for sensing and actu-
ating with different safety guarantees for these capabilities. Further, CPS must adapt
to changing risk levels as the environment changes. Different risks lead to situation-
dependent safety requirements and situation-dependent optimization potential. Without
context adaptivity, there would be exactly one possibility to cooperate safely. Regard-
ing the environment, this would need to be the set of worst-case conditions for all
properties, while for the truck interface exactly one configuration of leader capabilities
would be allowed by the follower. Therefore, variants need to be factored into both
service/safety interface and safety concept that a) increase chances of interface compat-
ibility and b) enable situation-dependent optimal performance while still maintaining
safety. Two types of variants are depicted in Fig. 4, left: The top variant decomposes the
reaction time worst-case assumption into another worst-case assumption about follower
computation time, but makes the communication delay dynamic so that the platoon can
adapt to different situations. The other example induces variants on the safety demand
bound for the provided leader speed leading to different performance guarantees for the
overall platoon since the safe distance computation still considers the situation-specific
worst-case.

Information Abstraction. The last property that distinguishes a design-time DDI from
a runtime DDI is the amount of incorporated information. After modularizing the CPS
safety concept into black-box system safety concepts with defined interfaces, each truck
manufacturer can certify their implementation including all pre-engineered variants con-
ditionally at design-time. Thus, runtime DDIs contain only the information required to
reason about variable safety conditions dynamically at runtime. These conditions are
a) a representation of the service interface with its safety guarantees and demands, b)
a system-internal mapping of safety guarantees and their required safety demands, and
c) context variable requirements for monitoring regarding their concrete equivalence
classes. In addition to the above, a runtime DDI also requires mechanisms for safety
interface matching, variant resolution, and runtime context monitoring.

ConSerts. Conditional Safety Certificates (ConSerts) [1] is a concrete instance of a run-
time safety assurance approach that unifies all above explained solution building blocks
for CPS safety assurance. ConSerts support open context in that they use a black-box
service architecture to achieve modularity. Through ConSerts, provided and required
functional services are enriched with safety guarantees and safety demands defining a)
formalized failure modes along with variable bounds to be assured for them, b) context-
specific constraints such as situation, for which these bounds have to be valid and c) an
integrity statement indicating the confidence required for the assurance of the bounds.
ConSerts support adaptivity in that they allow to define a) different safety guarantees
and demands for a single service and b) monitored context properties to provide run-
time evidences. ConSerts support information abstraction through the usage of Boolean
logic for expressing safety guarantee/demand and runtime evidence relationships thus
abstracting the design-time safety concept to the mere dependency logic being relevant
at runtime.
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Platooning Runtime DDIs. Figure 5 shows runtime DDIs for the leader and follower
platoon trucks. They contain the service interface, its safety guarantees (SG), safety
demands (SD) and required runtime evidences (RtE). The “Safe Truck Platooning”
service can be guaranteed by the follower truck with high quality (=small truck dis-
tance, SG1), if the communication delay does not exceed a certain quality bound and
the follower speed can be determined with the required confidence (RtE1,2). In addi-
tion, deviations of the provided leader speed bound to max 2 km/h are demanded from
the leader truck to fulfill SG1. One potential realization of SG4 is to employ diverse
redundancy regarding the measurement principle of the leader’s speed (RtE3,4). If RtE
3 cannot be provided anymore due to e.g. ESP system failure, graceful degradation is
triggered through ConSert evaluation in that only SG2 can be guaranteed given that RtEs
1, 2 and 4 are still existent. This leads to a softer safety demand to the leader (SD2) yet
still better performance than deactivation of the cooperation. In this way, ConSerts allow
the definition and dynamic negotiation of arbitrary degradation level variants between
themaximum (SG1) and no performance (SG3,6), while always guaranteeingCPS safety
in a modular fashion during CPS cooperation.
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Fig. 5. Platooning runtime DDIs and ConSerts for leader and follower trucks.

4 Related Work

In the SPES projects [11], the Open Safety Metamodel (OSM) enables modular, cross-
tool and cross-company safety certification. The OSM had a major influence on the
evidence formalization in design-time DDIs. The AMASS project focusses on organiz-
ing safety cases, formalized in the Common Assurance and Certification Metamodel
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(CACM) [12]. The CACM is an extension of the DDI’s Structured Assurance Case
Metamodel (SACM), in that it adds capabilities to model risk management standard
terminology. Integrating CACM in the DDI is ongoing work to extend the latter with
further formalization capabilities regarding concepts and terminology from dependabil-
ity standards as well as evidence management processes. In contrast, there are pure run-
time safety monitor approaches such as [13], which dynamically assess risk at runtime
and react appropriately. The DDI improves upon these works by seamlessly integrating
design-time safety assurance and runtime monitoring.

5 Conclusion and Future Work

In this paper, we described a continuous engineering method for safety assurance of
CPS-based functionality via ConSerts. Our method seamlessly integrates development
time and runtime assurance to provide safety claim confidence. The DDI dependability-
engineering framework in Sect. 2 unifies development time and runtime assurance arti-
facts in an integrated data store, the DDI. In Sect. 3, we executed the DDI engineering
workflow for a CPS-based platooning function, from use case description over inte-
grated development time assurance (HARA, functional analysis, safety analysis, safety
concept) to the derivation of modular safety concepts and ConSerts as fully formal run-
time safety models. The demonstration suggests that the DDI framework can bridge the
gap between established development time assurance practice and innovative runtime
assurance concepts for tackling uncertainties and unknowns of CPS at runtime. In the
future, we look to enrich runtime DDIs with probabilistic reasoning schemes to account
for uncertain perception at runtime. Dynamic Safety Management [14] is a promising
conceptual framework for runtime safety assurance, which we see as a roadmap for the
evolution of DDIs.
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Abstract. An Assurance Case (AC) documents an argument that sup-
ports a claim made about a system. An effective Assurance Case pro-
vides adequate belief to stakeholders that the system under consideration
adequately embodies specific critical properties, for example safety and
security. Comprehensive evaluation of an AC is a necessary step in build-
ing this belief. This involves measuring confidence in the assurance case
argument, but also includes an overall quality assessment of the AC. This
paper describes essential components of a (safety) AC evaluation process
using previously defined evaluation criteria. These criteria were classified
as applying to either structure or content of the (safety) AC. Two exam-
ple (safety) ACs are used to demonstrate the approach, and for brevity,
we illustrate the examples using purely Goal Structuring Notation (GSN)
and in a second example, a GSN -like notation.

Keywords: Assurance case · Safety · GSN · Traceability

1 Introduction

An Assurance Case (AC) is a generalization of a safety case for a particular
system. It is a living document that provides arguments that assure critical
properties the system is required to embody. For demonstration purposes within
the restrictions of this paper, we focus on safety as the critical property to be
assured. One of the main objectives of an AC evaluation is to ensure that argu-
ments in the AC are valid and sound. However, sound argumentation is not
enough. The AC must be understandable by all stakeholders. It must also be of
sufficient quality to engender trust that sufficient care was taken in its construc-
tion. Any weakness in claims, arguments or evidence potentially degrades the
quality of an AC. The objective of our work is to assess the overall quality of an
AC. This paper describes essential elements of a systematic and comprehensive
evaluation process guided by previously defined evaluation criteria [4].

There are many notations used to document ACs. Goal Structuring Notation
(GSN) [7] has gained considerable popularity in academia and is making inroads
in industry. Thus, we use GSN examples to illustrate our evaluation process.
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1.1 Contribution

The contribution of this work is the definition of a systematic approach to the
comprehensive evaluation of ACs. In this paper:

• we present pertinent aspects of our approach, supplemented by high-level,
semi-formal models of the evaluation process and its outcomes;

• we provide sufficient detail to illustrate our approach on three criteria from
[4] – two that apply to content, and another one that applies to structure of
an AC;

• we evaluate our approach using two example ACs. The one AC is documented
in GSN, the other is documented using a GSN-like notation.

2 Preliminaries

This section briefly introduces assurance cases, GSN, and recaps the evaluation
criteria we presented in [4].

2.1 Assurance Cases

According to Bloomfield et al., “An Assurance Case is a documented body of
evidence that provides a convincing and valid argument that a specified set of
critical claims about a system’s properties are adequately justified for a given
application in a given environment” [3]. In general, an AC starts with a top-
level claim regarding critical properties of a system, which is then supported by
sub-claims. Terminal claims are grounded in evidence from the development of
the system. There are many notations used to document ACs. Some of them
are largely textual, and others are largely graphical with extensive references to
textual documents produced during system development. The primary reason to
develop a (safety) AC is to present explicit, understandable reasoning as to why
we should believe that the system of interest is adequately safe.

2.2 Goal Structuring Notation

Goal Structuring Notation (GSN) was developed by Tim Kelly [7], motivated by
Toulmin’s work on argumentation [11]. The main body of a GSN diagram con-
sists of goals representing claims and sub-claims, optional strategies that describe
how goals are decomposed into sub-goals as representative of an argument, and
solutions representing evidence that supports terminal goals. In addition, the
AC developer can include supplementary information by adding assumptions,
context, and justifications.
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2.3 Recap of Our Evaluation Criteria in [4]

In [4] we defined criteria for the evaluation of an AC. We categorized the criteria
into two groups, one for the structure of an AC and another for the content of an
AC. Furthermore, we defined them from two different evaluation perspectives:
i) the AC developer’s perspective; and ii) the external reviewer’s perspective.
Table 1 presents all the criteria. We have added a little extra discussion for
three of these criteria below the table. These three criteria are the same criteria
for which details of the evaluation process are described in Sect. 4.

Table 1. A list of evaluation criteria and their rationale (from [4]).

Evaluation criteria for structure Evaluation criteria for content

Criterion Rationale Criterion Rationale

Syntax check Difficult to
navigate and
understand if
syntax is not
well-defined

Convincing
basis

A feasible top-level claim is
essential. Reasoning needs to be
explicit so that it can be
reviewed. Confirmation bias can
adversely affect reasoning and
the acceptance of evidence

Traceability Necessary for
understanding
and maintenance

Rigour of
argument

Rigour is important in making
the reasoning less subjective and
more repeatable

Robustness Essential to
achieving
incremental
assurance

Quality of
hazard
analysis

Hazard identification and
mitigation is a critical aspect in
assuring safety

Understandability Need to facilitate
understanding
through structure

Arguing
complete-
ness

Deficiencies in completeness are
a common source of error

Efficiency Need to facilitate
the ease with
which ACs can
be evaluated
through structure
and notation

Repeated
arguments

A source of error if they are
used where not completely
appropriate

ALARP ALARP and associated
principles are essential in
demonstrating cost-benefit
considerations and due diligence

Confidence An essential measure of trust in
the reasoning and associated
evidence. Not dealt with in
detail in this paper because of
the abundance of publications
on this topic
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• Structure Evaluation-Syntax Check: In addition to affecting understand-
ability, syntax errors in the AC may indicate a lack of care taken in its con-
struction and thus adversely affect the perceived quality of the AC.

• Content Evaluation-Convincing Basis: As with any complex document,
the overview presented to readers is crucially important. The overview in
an AC is represented by the top-level of the argument – the top claim
and its immediate supporting sub-claims and their associated assumptions
and context. Throughout the AC, the argument that supports upper-level
claims should be explicit. It may be described in natural language, a logic of
some kind, or a combination of these. The important point is that for every
(sub)claim, there needs to be some reasoning that shows why, if its premises
are true, then the parent claim is true. “Confirmation bias” [8] is another
challenge in ACs. A simple example is when people look for specific evidence
that supports a claim without considering counter-evidence. Apparent con-
firmation bias degrades confidence in an AC.

• Content Evaluation-Rigour of the argument: Explicit argumentation is
an important characteristic of an AC. Evaluation of rigour of the argument is
complementary to evaluating the convincing basis. Presentation of the argu-
ment in natural language is not as convincing as semi-formal notations or
rigorous application of reasoning patterns.

3 Related Work

Reference [4] included a thorough literature review on the evaluation of an AC
in the context of defining evaluation criteria. We have added some additional
publications that specifically deal with the process of evaluating ACs. In [10],
the author uses problem focused guide words (incorrectly phrased, relevance,
directness, deductively invalid, undercutting evidence, rebutting evidence, low
inductive strength, high inductive strength, coverage, replicability) to structure
the evaluation process, followed by suggestions on how these often can be fixed.
In [9], the assessment process consists of four steps (preparation, logic and struc-
ture validation, quality evaluation, record and feedback) performed by a safety
assessor, who makes recommendations that are then implemented by the safety
case developer. In [6], the Health and Safety Executive (HSE) defines 36 princi-
ples categorized into 10 groups that are used to assess safety cases.

A key part of evaluating ACs is assessing confidence; there has been much
work published on this (much of which is reviewed in [4]). A relatively recent
publication [2] has been added to the literature on AC confidence. It introduces a
confidence measure technique ‘INCIDENCE’, which considers both design time
and run time evidence and uses GSN as an example.

4 Evaluation of an Assurance Case

This section presents details of our systematic evaluation of ACs. To put this on
a well-structured footing, we started by modelling the evaluation process and its
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Fig. 1. The generic model of the AC evaluation process.

relevant data, including all primary components of an AC as well as development
artefacts from the system of interest. This generic model is shown in Fig. 1. The
generic model shows explicitly process, recommendation, AC data and system
development data with associations and data flows required for the systematic
evaluation. The model serves as a guide to the evaluation as well as a check on
it consistency. The main components are (colours are not shown in this paper):

• The Process for evaluating the AC (represented by Green rectangles);
• The Recommendation arising from the evaluation (Blue rectangles);
• AC data that is the subject of the evaluation (Yellow rectangles);
• System development data that is referred to in the AC (Orange rectangles).

In addition,

• Black arrows/lines are used for input and output and associations;
• Red arrows/lines are used to highlight links between the AC and system

development artefacts.

Figure 1 contains all essential links for refinement of all 12 criteria. In this paper,
we had space to focus on only 3 criteria. The generic model must be refined and
instantiated for specific evaluation criteria. The generic model systematizes the
process of defining an evaluation process for arbitrary AC criteria, making AC
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evaluation more repeatable and less error prone, as we can rely on the model to
guide us as to how to carry out the instantiation. Refinement will involve pre-
cisely modeling inputs and outputs of individual steps in an evaluation process.
Instantiation will involve adding textual descriptions for process stages, which
can be checked for conformance with the components of the model.

To illustrate refinement and instantiation of our model we chose one content
criterion and one structural criterion as examples for instantiation. The content
criterion we selected was “Convincing basis for the AC” and we have included the
refined version of the model for Convincing basis in Fig. 2, and the instantiated
process in Sect. 4.1:1. We also include a much briefer discussion on another con-
tent criterion, “Rigour of the argument” in Sect. 4.1:2. The structural criterion
we selected to include in this paper was “Syntax check”. In this case we show
the instantiated process in Sect. 4.2, but there is no space to include another
figure showing the refined model. (Actually, we wanted to include “Traceability”
as the structural criterion, but it is too complex to show in the space available).

We conducted a self-validation of our AC evaluation processes as a first step
in evaluating our approach. A full-scale evaluation of the process is very difficult
to arrange at this stage of development. The result of our self-validation of
the process for Convincing basis is documented in Sect. 5.1; for Rigour of the
argument in Sect. 5.2; and for Syntax check in Sect. 5.3.

4.1 Evaluating Content of an Assurance Case

We can now describe how we refined the high-level model for each of the evalu-
ation criteria. We start with criteria related to content of the AC, and will show
the major steps in evaluating the convincing basis for the AC.

1. Convincing basis for the AC: Figure 2 shows the relevant aspects of a
refinement of the model in Fig. 1. We did not include the documentation
resulting from the development of the system, since that part of the model
does not change depending on the specific criterion being evaluated, and the
links to that data are obvious.

One of the main intentions of convincing basis is to check explicitness of
claims, arguments, supporting terms and evidence. In addition to this, a con-
vincing basis looks for a complete top-level claim description, and compliance
of evidence with acceptance criteria to avoid confirmation bias highlighted by
Leveson [8].

The refinement shows that “ProcessX” now consists of 4 main steps (reading
bottom to top):

• TopLevelClaimCheck – a review of the top level claim. Inputs to this process
are the AC data items of the TopClaim itself, and TopClaimSupp.Terms.
Output is simply to the ErrorReport. These links make it reasonably clear
that the focus of this check is the wording of the top-level claim. Assumptions
and criteria for this check are found in TopLevelAssumptions.
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Fig. 2. The evaluation process for Convincing basis for the AC.

• SubClaimCheck – a review of all subclaims. Inputs to this process are Sub-
claims, SubclaimsSupp.Terms, Rationale, TerminalClaims, AcceptanceCrite-
ria and the RequiredEvidence. Output is again to the ErrorReport. The focus
of this check is on the wording and rationale for the decomposition of the argu-
ment, and also on whether or not the evidence required to support terminal
claims makes sense. Assumptions and criteria for this check are to be found
in SubclaimCheckAssumptions.

• ExplicitArgument – a review that evaluates how explicit the argument is, in
general. Inputs to this process are ArgumentsSupp.Terms, Arguments and
Rationale. Indirect inputs are Claims, Evidence, Rebuttals, ArgPatterns and
ArgModules. Output is again to the ErrorReport. The focus of this check is
on whether the argument, i.e., reasoning, is made visible explicitly in the AC.

• ConfirmationBias – a review that evaluates how susceptible the argument is
to confirmation bias. Inputs to this process are Rebuttals, RequiredEvidence
and AcceptanceCriteria. Output is again to the ErrorReport. The focus of this
check is to ensure that the AC has specific safeguards against confirmation
bias.

Instantiated Evaluation Process: We can now instantiate the model. We do
this by describing the major steps in each of the 4 sub-processes. We can then
check these steps to see that they conform to the model.
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• TopLevelClaimCheck:

(1) Top-level claim should consist of two parts: subject and predicate. The sub-
ject should represent a system or a component or subsystem of a system and
the predicate should represent critical properties of that system to assure,
contextual, environmental and operational information.

(2) The meaning of a top-level claim shall be clear and not create any ambiguity.
(3) All critical terms mentioned in a top-level claim shall be clarified.
(4) Necessary assumptions shall be stated explicitly.

• SubClaimCheck:

(1) The meaning of a claim shall be clear and not create any ambiguity.
(2) All critical terms mentioned in a claim shall be clarified.
(3) Claims related to process or product or people shall be clarified to support

upper-level claims.
(4) Necessary assumptions to support claims related to process or product or

people shall be stated explicitly.
(5) Terminal claims shall be supported by proper evidence and acceptance cri-

teria for evidence shall be clarified.

• (Review)ExplicitArgument:

(1) The reasoning of how an upper-level claim is decomposed into supporting
claims and/or evidence and how lower-level claims and/or evidence together
support an upper-level claim shall be documented explicitly. The latter is
more important than the former one.

(2) The rationale for reasoning shall be documented if it is necessary.
(3) All key terms mentioned in reasoning shall be clarified.
(4) Necessary assumptions in reasoning shall be clarified.

• (Review)ConfirmationBias:

(1) Rebuttals shall be documented and resulting violation of a claim shall be
documented.

(2) Evidence to support rebuttals shall be clarified.
(3) Evidence description shall comply with acceptance criteria for that specific

evidence.

• GenerateRecommend:

(1) For any error found in an AC, a recommendation shall be made with appro-
priate criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC developers use the evaluation process from the beginning
of an AC development. For example, AC developers may provide guidelines to
system developers for defining boundary values for system functionalities, etc.
It also guides AC developers to use rebuttals and thus avoid “confirmation
bias”, and to check that evidence complies with its acceptance criteria.
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• External Reviewer: External reviewers are guided as to how to check claims,
arguments and evidence using proposed procedures, and especially to examine
claims for ambiguity. Furthermore, external reviewers are reminded to check
for rebuttals, and judge whether or not they are adequately resolved.

2. Rigour of the Argument: We briefly describe another instantiated process
for the content criterion – rigour of the argument. In this case, due to space
limitations, we have not shown the refined model for this process.

Instantiated Evaluation Process: This criterion focuses on rigorous argu-
ment structure. Pattern instantiation may guide in achieving this, or a thorough
description of argument may help in acquiring a rigorous argument. Such a
description may be a deductive or inductive proof in an argument. The eval-
uation process “ProcessX” is refined in four checks: “CheckFormalArgument,”
“CheckInformalArgument,” “CheckClaimForValidity” and “CheckRationaleFor-
Validity”. The rules for each check are as follows:

• CheckFormalArgument:

(1) A formal argument shall be valid with necessary assumptions.
(2) Rationale to support the formal argument shall be clarified.
(3) All terms supporting the formal argument shall be valid.
(4) Rebuttals in a formal argument shall be clarified, and they shall be complete

and consistent. (if it is found)
(5) Mitigation of rebuttals in a formal argument shall be clarified, and they

shall be complete and consistent.(if rebuttals exist)
(6) An argument branch in an AC complying with an argument pattern shall

thoroughly follow the pattern.

• CheckInformalArgument:

(1) An informal argument shall be defined inductively, and the steps shall be
complete and consistent.

(2) Rationale to support the informal argument shall be clarified.
(3) All terms supporting the informal argument shall be complete and consis-

tent.
(4) Rebuttals in an informal argument shall be clarified, and they shall be

consistent. (if it is found)
(5) Mitigation of rebuttals in an informal argument shall be clarified, and they

shall be consistent. (if rebuttals exist)
(6) An argument branch in an AC complying with an argument pattern shall

thoroughly follow the pattern.

• CheckClaimForValidity:

(1) Claim shall be valid (by reviewing proofs-deductive or inductive), complete
and consistent
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(2) Rebuttals shall be valid (by reviewing proofs-deductive or inductive) and
complete (if it is found)

• CheckRationaleForValidity:

(1) Rationale shall be supported by deductive or inductive proofs.(if it is nec-
essary).

• GenerateRecommend:

(1) For any error found in an AC, a recommendation should be made with
criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC developers are guided to use more rigorous approaches to
their arguments. Based on these checks, they are more likely to find and fix
gaps/fallacies in arguments. They are reminded that there should be explicit
reasoning to show how child claims support a parent claim. The AC developers
may also find it worthwhile to provide documentation to external reviewers
that aid them in understanding the arguments.

• External Reviewer: External reviewers have a basic check list that guides
them in evaluating the rigour of the argument. It provides context for them
in deciding whether or not the argumentation is defined with adequate rigour
– and it does not have to be formal.

4.2 Evaluating the Structure of an Assurance Case

An AC must be evaluated in terms of its structure and content. In this section,
we illustrate the instantiation of the evaluation model with one criterion for
structure, more specifically for the “Syntax Check” criterion. We use a GSN
example to show the approach and also describe how developers and external
reviewers utilize the instantiated process.

Syntax check:

• Instantiated evaluation process: The “Syntax check” is an early but
important stage of the evaluation process: without valid syntax, an AC is
unusable in more sophisticated stages of evaluation. A syntax check can be
performed with or without tool support. If a tool is used for syntax checking,
experts should still review the syntax of an AC to avoid tool failures. In this
illustration, we consider syntax checking of a graphical notation for ACs only
for syntax checking as our example is documented using GSN; nevertheless
we have defined rules for both graphical and textual syntax.

• CheckGraphSyntax:

(1) Check what type of notation is defined. If it is a user-defined notation,
obtain the documentation. Otherwise, a standard for a particular notation
should be followed;
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(2) Shapes of nodes shall be compliant with recommended shapes;
(3) There shall be one and only one association between any two nodes;
(4) Only valid associations shall exist between any two nodes;
(5) The only terminal nodes in the AC are those that in the defined syntax have

no outgoing associated nodes;
(6) Label/identifier of a claim/argument/evidence should be defined in an

acceptable format;

• CheckTextSyntax:

(1) Check what type of notation is defined. If it is a user-defined notation, then
one should look for the documentation;

(2) All artefacts of an AC shall comply with notation mentioned in the docu-
mentation.

(3) Label/identifier of a claim/argument/evidence should be defined in an
acceptable format;

• GenerateRecommend:

(1) For any error found in an AC, a recommendation should be made with
criticality (e.g. highly recommended, recommended, standard).

This process guides AC developers and external reviewers as follows:

• AC Developer: AC Developers can evaluate the syntax of an AC with or
without tool support. If developers evaluate manually, then they use rules
to evaluate the AC. For instance, developers may generate a report if they
encounter an error, e.g. shapes not complying with GSN community standard
2.0 [5] for an AC documented by GSN. This report can help developers to
fix an AC before final submission to external reviewers. They should start
the process as soon as the development of an AC starts. Developers should
validate the tool in use. This evaluation should produce qualitative results
instead of only boolean values (e.g. ‘yes’ or ‘no’). AC developers can per-
form their evaluation without tool support as well. This is clearly more time
consuming and probably more error prone. It is also more likely for “home
grown” AC notations as compared with using a standard/commercially avail-
able technique. A simple notation that the AC has been checked for appro-
priate syntax may be welcomed by the external reviewer.

• External Reviewer: The procedure provides specific rules for syntax checking.
External reviewers should also use tools when available. Syntax checks are
relatively easy to define when the AC developers have provided adequate
guidance as to what notation has been used.

5 Validation of the Evaluation Processes

This section presents a self-validation: applying the Evaluation Processes to
example ACs.
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5.1 Validation of “Convincing Basis for the AC” (A Content
Criterion)

We use an excerpt of a GSN-like example of a coffee cup to illustrate the Con-
vincing basis check. The top-level claim (represented by a rectangle) of the
AC is labelled as ‘TopClaim, C’, contexts (represented by rounded rectangles)
are labelled as ‘K1’, ‘K2’, ‘K3’ and ‘K4’, assumptions (represented by ovals)
are labelled as ‘A1’ and ‘A2’, an argument (represented by a parallelogram) is
labelled as ‘R’ and sub-claims (represented by rectangles) supporting the top-
level claim are labelled as ‘CR’, ‘CI’, ‘CPM’ and ‘CA’.

We use the AC for a coffee cup shown in Fig. 3. Four checks have defined
rules that we use to perform an evaluation.

‘TopLevelClaimCheck’: evaluates the top-level claim in Fig. 3. Concerning
rule (1), we find that top-level claim, “TopClaim, C” consists of two parts:
the subject “The coffee cup < X >” specifies the system and the predicate
“is safe in its intended environment, and its intended uses” specifies the critical

Fig. 3. The top two level claims of an AC for a coffee cup.
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property ‘safe’, with environmental and operational conditions in the description.
Concerning rule (2), we find that the meaning of the top-level claim is clear
and does not create any ambiguity. Concerning rule (3), we find clarification
of all terms (e.g. ‘safe,’ “intended environment,” “intended uses,” “coffee cup
specification”). Concerning rule (4), we find that necessary assumptions (e.g.
non-toxic material for a coffee cup and tolerable temperature) are clarified.

‘SubClaimCheck’: checks the second level claims of Fig. 3. The sub-claims
‘CR,’ ‘CI,’ ‘CPM’ and ‘CA’ are represented by modules as they contain implicit
argument branches. Page restrictions prevent us from including them. Concern-
ing rule (1), the meaning of all sub-claims is clear and does not create any ambi-
guity. Claim ‘CR2.2.1.1.1.2.2’ assures the competency of people in performing
‘FTA’ in Fig. 4.

Fig. 4. An excerpt of evidence complying with acceptance criteria for a coffee cup
example.

Concerning rule (2), we do not find any clarification for any term mentioned
in the claims. Concerning rule (3), we find that claims ‘CI’ clarifies assur-
ing implementation complies with requirements. Other claims (‘CR’, ‘CPM’
and ‘CA’) explain assuring valid and non-interfering requirements, ensuring
safety during production, maintenance and decommissioning and operational
assumptions. Concerning rule (4), we find no assumptions. Concerning rule
(5), we find that terminal claim ‘CR2.2.1.1.1.2.2’ is supported by evidence
‘E-CR2.2.1.1.1.2.2’ and claim ‘CR2.2.1.1.1.2.2 ACT’ and acceptance criteria
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‘E-CR2.2.1.1.1.2.2 ACT’ from an assurance case template are clarified. We use
‘(Review)ExplicitArgument’ to evaluate the explicitness of an argument. Con-
cerning rule (1), we find that argument ‘R’ describes explicit reasoning of how
subclaims (‘CR,’ ‘CI’, ‘CPM’ and ‘CA’) support top-level claim ‘C.’ Argument
‘R’ demonstrates reasoning adequately along with rebuttals and mitigation of
these rebuttals. Concerning rules (2), (3) and (4), we do not find any justification,
context or assumption.

‘(Review)ConfirmationBias’: reviews confirmation bias. Concerning rule
(1), we find that argument ‘R’ demonstrates rebuttals with possible counters
explicitly. Concerning rules (2), we do not find any evidence to support those
rebuttals. Concerning rule (3), Fig. 4 shows terminal claim ‘CR2.2.1.1.1.2.2’ is
supported by evidence ‘E-CR2.2.1.1.1.2.2’ and evidence complies with accep-
tance criteria ‘E-CR2.2.1.1.1.2.2’.

‘GenerateRecommend’ generates the following: a) It is recommended to clar-
ify key terms, e.g. context of “documented assumption” mentioned in claim ‘CA.’
should be clarified. b) It is highly recommended to state necessary assumptions.
c) It is recommended to state assumptions, justifications in reasoning ‘R’ e.g.
justification for ‘R’ should be clarified. d) It is recommended to clarify evidence
to support rebuttals.

5.2 Validation of “Rigour of the Argument” (A Content Criterion)

We use the same example in Fig. 3 to illustrate the rigour of the argument
evaluation. The argument is informal so we use ‘CheckInformalArgument.’ We
also perform ‘CheckClaimForValidity’ and ‘CheckRationaleForValidity’.

‘CheckInformalArgument’: concerning rule (1), we find that the arguments
are defined inductively with adequate steps, including rebuttals to support the
upper-level claims, and they are complete and consistent. For instance, argument
‘R’ has four steps of reasoning. Concerning rule (2), we do not find any rationale
for the argument, since ‘R’ is not supported by a justification. Concerning rule
(3), we do not find any context or assumption to support the argument. Con-
cerning rule (4), we find that some arguments do use rebuttals, e.g., ‘R’ uses two
rebuttals, ‘R1’ and ‘R2’. Rebuttals mentioned in the argument ‘R’ are consistent.
Concerning rule (5), we find that the mitigation of each rebuttal is demonstrated.
For instance, mitigations ‘CPM’ and ‘CA’ in argument ‘R’ resolve the rebuttals,
‘R1’ and ‘R2’. Concerning rule (6), we find that an argument branch considers
different phases of the development process.

‘CheckClaimForValidity’: concerning rule (1), we find that the sub-claims are
valid, complete and consistent because arguments are valid and evidence com-
plying with acceptance criteria support terminal claims. Sub-claims (‘CR’, ‘CI,’
‘CPM’ and ‘CA’ are represented by modules, details of which are not included
in this paper) are complete and consistent and valid supported by arguments.
Concerning rule (2), we find that arguments have defined rebuttals and mitiga-
tions. Rebuttals are complete (shown earlier), but there is no proof to check the
validity of those rebuttals.
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‘CheckRationaleForValidity’: concerning rule (1) we find that no justifica-
tion exists to support the argument.

‘GenerateRecommend’ produces the following: a) It is recommended that
rationale should exist to support argument ‘R.’ b) It is recommended that for
environmental or operational conditions during production, details of the main-
tenance stage should be clarified.

5.3 Validation of “Syntax Check” (A Structure Criterion)

To illustrate our syntax check process, we use AFI RVSM Pre-Implementation
Safety Case [1] as an example. It uses GSN for documentation. The safety
case shows safety arguments of RVSM (Reduced Vertical Separation Minimum)
implementation and maintenance to reduce the vertical separation between
Flight Levels 290 and 410 (inclusive) from 600 m to 300 m in AFI airspace. We
apply the rules for syntax check to an assurance case of type GSN.

‘CheckGraphSyntax’: concerning rule (1), we consider the GSN community
Standard 2.0 [5] as a reference. Concerning rule (2), by review we note that
shapes of goal and strategy comply with the standard. However, the example
refers to a solution as evidence, and they used a rounded rectangle for evidence
instead of a circle. They used one context and did not use any assumption or
justification in their safety case, though mentioned those terms in their exam-
ple safety case, and they otherwise comply with the standard. However, the
shape of the context used in the safety case does not comply with the standard.
Concerning rule (3) and (4), there is one and only one valid association (‘Sup-
portedBy’) that exists between any two nodes. For rule (5), the terminal nodes
(in some pages, terminal nodes are goals, and in some pages, terminal nodes are
evidence) have no outgoing association with other goals. With rule (6), the label
of goals, strategies and evidence follows a hierarchy. Thus, with rule (2), one
shape (context) does not comply with the standard.

‘GenerateRecommend’ generates that it is highly recommended to fix the
shape to comply with the standard, or to explicitly document how and why it
deviates from the standard.

6 Conclusion

Our proposed approach incorporates rules to identify known weaknesses in an
AC. These weaknesses can be associated with specific, previously published eval-
uation criteria, and the evaluation process made more structured and systematic
by using these criteria to drive the evaluation process. We illustrated the appli-
cation of these evaluation rules, via refinement and instantiation of a generic
evaluation process, for two criteria related to content of the AC, and one crite-
rion related to structure of the AC. These three processes were then self-validated
using one GSN example and another GSN -like example. We have thus shown
that systematic and comprehensive evaluation of ACs is feasible.
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Abstract. Safety assurance cases (ACs) are structured arguments that
assert the safety of cyber-physical systems. ACs use reasoning steps, or
strategies, to show how a safety claim is decomposed into subclaims which
are then supported by evidence. In practice, ACs are informal, and thus
it is difficult to check whether these decompositions are valid and no
subclaims are missed. This may lead to the approval of fallacious safety
arguments and thus the deployment of unsafe systems. Fully formalizing
ACs to facilitate rigorous evaluation is not realistic due to the complex-
ity of creating and comprehending such ACs. We take an intermediate
approach by formalizing several types of decomposition strategies, prov-
ing the conditions under which they are deductive, and applying them
as templates that guard against common errors in ACs. We demonstrate
our approach on two scenarios: creation of ACs with deductive reasoning
steps and evaluation and improvement of existing ACs.

Keywords: Assurance cases · Goal Structuring Notation (GSN) ·
Safety arguments · Argument decomposition · Strategies ·
Formalization · Deductive reasoning · Fallacies · Argument templates

1 Introduction

Cyber-physical systems have become deeply ingrained in many aspects of our daily
life. With an increased usage of these systems in safety-critical domains (e.g., auto-
motive and aerospace), the need to ensure that they function correctly and safely
has increased as well. In response to that need, several industry-specific standards
have been built with the aim of providing guidance on developing safe systems. For
example, ISO 26262 [18] is the de facto functional safety standard in the automo-
tive industry. At a high level, the standard specifies a framework of activities aimed
to manage functional safety during automotive product development, where each
of these activities results in one or more work products. Part 2 of the standard then
requires compiling these work products into assurance cases [18]. Safety assurance
cases (ACs) are structured arguments used to argue that systems are safe for use
in their target operational environments.
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Fig. 1. Fragment of an assurance case (AC) for the LMS system.

Modern safety ACs usually take the form of tree-like structures, where the
root of the tree contains the system’s safety claim(s), and the remainder of
the tree hierarchically develops an argument that supports the top-level safety
claim(s), based on evidence. There are several notations that can be used to
describe ACs (e.g., Goal Structuring Notation (GSN) [16], Claim-Argument-
Evidence (CAE) [3]), and ACs can be represented by metamodels such as Struc-
tured Assurance Case Metamodel (SACM) [28]. In this paper, we focus on ACs
represented in GSN.

Motivating Example. Figure 1 shows a fragment of an informal GSN AC for
a vehicle’s Lane Management System (LMS). The LMS is an automated vehi-
cle safety feature which ensures that vehicles maintain a safe position in their
lanes [20]. GSN ACs contain claims which assert that certain system proper-
ties hold, and argument steps or strategies which decompose claims into more
refined subclaims that support their parent claims. These subclaims are fur-
ther decomposed until they can be linked to solution nodes which support their
corresponding claims through evidence. A justification node can be linked to a
strategy to argue that the decomposition is appropriate for its claim. In this
fragment, claim C1 asserts that the LMS always detects any system failures.
It is decomposed by strategy Str1 into subclaims which assert that the LMS
always detects failures in each of its subsystems. However, the content of C1 is
informal, and thus it is difficult to evaluate whether this decomposition strategy
is sufficient to produce a sound argument, i.e., whether the validity of C2 -C4 is
sufficient to imply C1. Are the subsystems in C2 -C4 the only ones that can fail?
Can a failure be caused by an improper interaction between two correctly func-
tioning systems? These questions are not explicitly addressed in the argument.

The former example demonstrates only a subset of possible AC fallacies that
have been identified in the literature, e.g., [14,15]. Approval of fallacious ACs can
result in the deployment of unsafe systems, e.g., the crash of the RAF Nimrod
aircraft in 2006 [17], yielding severe real-world consequences. Yet human-based
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assessment of ACs has been found to be inconsistent [15] (i.e., different reviewers
can find different fallacies in the same AC); it should be augmented with a degree
of automation, based on rigour and formality.

Two main approaches have been investigated in the literature to facilitate
rigorous AC evaluation. The first, e.g., [1,2,4,32], involves fully formalizing ACs.
We believe that this is not realistic due to the reduced understandability of fully
formalized ACs, which complicates their development and limits the reviewabil-
ity [14]. The second approach, which we adopt here, is to formalize ACs partially,
to maintain their accessibility while enabling analysis. This approach is promoted
by Rushby [29,30] who suggested that while AC aspects relevant to our knowl-
edge of the assured system (e.g., its environment and hazards) require human
assessment, reasoning about the system design can be automated. This app-
roach has been implemented in the AdvoCATE tool [11,24] which has a feature
that takes claims supported by theorem-proving evidence and decomposes them
into sub-arguments based on the theorem prover’s internal logic. Template-based
approaches to AC development such as [33] have proven to be effective in mit-
igating common developer errors; however, we are not aware of an existing set
of AC strategy templates which are provably deductive (i.e., strategy templates
in which the parent claim is a logical consequence of the child claims).

Contributions. In this paper, we aim to take a step towards improving the
safety assurance of cyber-physical systems by facilitating the rigorous evaluation
of their ACs. Specifically, we formalize several types of decomposition strategies,
identifying the conditions under which each of these strategies yields a deductive
argument, and applying them as templates that guard against particular types
of AC errors. Our approach can be leveraged in two scenarios: (i) creating ACs
with deductive reasoning steps; and (ii) evaluating existing ACs by mapping
their strategies to these provably deductive strategies and assessing whether
any of the necessary AC components are missing or are in the wrong form.
This is complementary to the approach implemented in AdvoCATE [11,24],
which formally decomposes claims that are supported by evidence from theorem
provers. We demonstrate scenarios (i) and (ii) by creating AC fragments for a
simple floor-cleaning system (FCS) (introduced in Sect. 2) and by applying a
strategy template to an informal fragment of the LMS AC, respectively.

Organization. The rest of this paper is organized as follows: Sect. 2 formalizes
AC claims and demonstrates them on the FCS example. Section 3 uses the
formal notion of AC claims to characterize different classes of strategies, and
identifies the conditions under which these strategies are provably correct. In
Sect. 4 we show how these strategies can be used to construct an AC with
provably deductive reasoning steps on the FCS example, and we demonstrate
how to rigorously assess and augment existing ACs (i.e., the LMS AC) using
these formal strategies. Section 5 discusses related work and Sect. 6 concludes
with future work.
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2 Preliminaries

After introducing the FCS running example, we define concepts of executions,
properties and AC claims.

2.1 Running Example: Floor-Cleaning System

The FCS is an automated system which operates over a grid of n × n floor tiles.
It is designed to vacuum all tiles that contain objects and to clean all grimy
tiles without becoming damaged. It can do so by executing sequences of the
following actions: moveTile(dir) moves the FCS to the adjacent floor tile in
the specified direction (where dir ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}), cleanTile
cleans the floor tile at its current position, vacuumTile vacuums the floor tile at
its current position, and idle tells the system to remain stationary.

The Boolean variables {Gij , Oij ,Hij} describe a tile’s state at position (i, j),
where Gij denotes whether the tile is grimy, Oij denotes whether the tile contains
objects, and Hij denotes whether the tile is hazardous. Environment actions
may cause the states of tiles to change. Specifically, actions dirtyTile(i, j),
addObject(i, j), and addHazard(i, j) set Gij , Oij and Hij , respectively, to True.
The FCS may be damaged if it moves to a hazardous tile (i.e., Hij = True)
or if it attempts to clean a tile containing an object (i.e., Oij =True) before
vacuuming it.

Any environment state is defined by the states of its n2 tiles. A system state
is described by a predicate Damaged indicating if the system is damaged, and a
variable pos= (x, y) ∈ {1, 2, . . . , n}×{1, 2, . . . , n} indicating its current position
in the grid. Any world state (i.e., a system state joint with an environment state)
can be represented as {Damaged ,pos, (G11, O11,H11), . . . (Gnn, Onn,Hnn)}. Let
SFCS denote all world states, let AFCS denote the set of all system and envi-
ronment actions, and let ΔFCS ⊆ S × A × S denote all valid state-action-state
transitions (i.e., (s, a, s′) ∈ ΔFCS iff applying action a in state s causes a tran-
sition to state s′). The FCS and its environment are described by a Labeled
Transition System (LTS) MFCS = (SFCS, AFCS, ΔFCS) [19].

2.2 AC Claims as Properties over Executions

An AC claim asserts that a property holds for a system over a set of its possible
executions. We formally define properties and executions in terms of LTS models;
however, these definitions generalize to all models representing system states and
transitions between them. Executions represent paths through the operation of
a system. Properties are statements which make assertions over executions.
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Definition 1 (Execution). Given an LTS M = (S,A,Δ), an execution {s0,
(a1, s1), (a2, s2) . . .} is an initial state s0 ∈ S and a sequence of action-state
pairs (ai, si), where each action ai ∈ A, each state si ∈ S, and each state-
action-state transition (si−1, ai, si) ∈ Δ. The set of all executions of M is a
set X consisting of each execution x = {s0, (a1, s1), . . .}, where every transition
(si−1, ai, si) is valid (i.e. (si−1, ai, si) ∈ Δ).

In MFCS, let s0 denote a non-damaged system state at position (1, 2) on a
3 × 3 grid, where all tiles are clean, nonhazardous, and contain no object (i.e.,
Gij , Oij , and Hij are False for each i, j). One possible execution is given by
{s0, (addObject(1, 1), s1), (moveTile(0,−1), s2), (vacuumTile, s3)}, where each
state si (for i = 1, 2, 3) results from applying action ai to state si−1.

Definition 2 (Property). A property P: S × (A × S)∗ −→ {True, False} is a
statement which can be evaluated for any execution x = {s0, (a1, s1), (a2, s2) . . .}.

A possible property of MFCS is P0: “The system never reaches a hazardous
tile”. Consider an execution x0 = {s0, (a1, s1), (a2, s2), . . .}. If (in, jn) denotes the
position of the FCS in state sn, then the environment variable Hinjn indicates
whether the system is on a hazardous tile in state sn. The property P0(x0) holds
if and only if Hinjn is False for all n.

We can now express the notion of AC claims.

Definition 3 (Claim). Let M = (S,A,Δ) be an LTS, let X denote a subset of
all executions of M , and let P be a property. The claim C(P,M,X) denotes the
statement ∀x ∈ X, P(x), i.e., “Property P holds for every execution x ∈ X”.

For MFCS and property P0 as above, let X0 be the set of executions where
MFCS starts on a nonhazardous tile. The claim C(P0,MFCS,X0) asserts that
the system will never reach a hazardous tile in any execution where it begins
on a nonhazardous tile, or, formally, ∀x = {s0, (a1, s1), ...} ∈ X0,∀i ∈ {0, 1, .., },
Damaged(si) = False.

3 Formal Strategies

In this section, we categorize strategies based on how the properties and execu-
tions of parent claims relate to those of subclaims. Specifically, we define and for-
malize two common strategies (domain and property decomposition strategies),
identify their needed components, and prove that the resulting decompositions
are deductive, i.e., the parent claim is logically inferred from the child claims.

Definition 4 (Deductive Decomposition Strategy). Let strategy Str decompose
claim C into subclaims C1, . . ., Cn. Str is deductive iff (C1 ∧ . . . ∧ Cn) ⇒ C.
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3.1 Domain Decomposition Strategies

Domain decomposition strategies are similar to proofs by cases which divide a
proposition into a set of cases, with each case covering a set of instances where
the proposition may/not hold. A domain decomposition strategy takes a claim
that some property P holds for a set of executions, and decomposes it into
subclaims which assert that P holds over a subset of these executions. It does
so by choosing a domain of values that each execution can be mapped onto,
partitioning the domain into subsets, and arguing separately over the executions
mapped to each subset. For example, any execution of the FCS can be mapped
onto the domain of natural numbers based on the number of tiles cleaned by the
FCS, and thus, these executions can be partitioned into subsets by a partition
of natural numbers.

Definition 5 (Domain Decomposition Strategy, Justification, Completeness).
Given an LTS M = (S,A,Δ) and a set of executions X of M , let D be a domain
of values and let f be a relation which maps executions in X to values in D.
Let D = {D1,D2, . . . , Dn} be a set of subdomains of D, i.e., ∀i ∈ {1, . . . , n},
Di ⊆ D. Given a property P and the claim C(P,M,X), a domain decomposition
strategy (C(P,M,X),D,D , f) decomposes C(P,M,X) into n subclaims of the
form C(P,M,Xi), where Xi = {x ∈ X | f(x) ∈ Di} for i ∈ {1, ...n}. This
strategy is justified if the relation f is a function (i.e., f maps every every
execution x ∈ X to a value d ∈ D), and it is complete if D = (D1∪D2 . . .∪Dn).

Theorem 1. If a domain decomposition strategy (C(P,M,X),D,D , f) is jus-
tified and complete, then it is deductive.

Proof. Consider a domain decomposition strategy (C(P,M,X),D,D , f), which
decomposes a claim C(P,M,X) into subclaims of the form C(P,M,X1),
. . . , C(P,M,Xn), where each Xi is defined as in Definition 5. Suppose that this
strategy is justified and complete, and that each subclaim C(P,M,Xi) holds
∀i ∈ {1, 2, ..., n}. We proceed by showing that for each execution x ∈ X, P(x)
holds.

Consider any execution x ∈ X. Since this strategy is justified, we have f(x) =
d for some d ∈ D. From completeness we have that D = (D1 ∪ . . . ∪ Dn).
Therefore, ∃i ∈ {1, 2, . . . , n} such that f(x) ∈ Di. Fix this value of i. The claim
C(P,M,Xi) states that ∀xi ∈ Xi, P(xi), where Xi = {x′ ∈ X | f(x′) ∈ Di}.
Since f(x) ∈ Di, we have that x ∈ Xi, and thus C(P,M,Xi) =⇒P(x). The
claim C(P,M,Xi) holds by assumption; thus, P(x) holds. Since x is an arbitrary
execution in X, P(x) holds for every x ∈ X. Therefore, (C(P,M,X1) ∧ . . . ∧
C(P,M,Xn)) =⇒ C(P,M,X)) if the domain decomposition strategy is justified
and complete. 
�

Figure 2 shows a template for justified and complete domain decomposition
strategies as per Definition 5. Examples of using domain decomposition strategies
to decompose claims are shown in Sect. 4 by Str2 and Str3.
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Fig. 2. Template for a justified, complete domain decomposition strategy.

3.2 Property Decomposition Strategies

Property decomposition strategies decompose a claim that a property holds over
a set of executions into subclaims, each of which asserts that a different property
holds over the same set of executions. Given an LTS M , an execution set X,
and properties P, P1, P2, . . . Pn, consider decomposing the claim C (P, M, X)
into subclaims C (Pi, M, X) for i = 1..n. A property decomposition proves that
these subclaims imply the parent claim by asserting that the set of executions
which satisfy P1, . . . Pn is a subset of the executions which satisfy P.

Definition 6 (Property Decomposition Strategy and Justification). Given a
set of executions X of an LTS M, a property P, and a set of properties
P = {P1, . . . ,Pn}, (C(P,M,W ),P) is a property decomposition strategy that
decomposes the claim C(P,M,X) into n subclaims of the form C(Pi,M,X) for
i ∈ {1, 2, . . . n}.

Consider the execution sets XP,XP1 . . . XPn
, where XP = {x |P(x)} and

XPi
= {x |Pi(x)}, ∀i ∈ {1, 2, ..., n}. A property decomposition strategy is jus-

tified if XP ⊇ (XP1 ∩ XP2 ∩ . . . ∩ XPn
). Note that XP denotes the set of all

executions which satisfy property P, whereas X denotes only the executions cov-
ered by the strategy’s parent claim.

Theorem 2. If a property decomposition strategy (C(P, M, X),P) is justified,
then it is deductive.

Proof. Consider a property decomposition strategy (C (P, M, X),P) which
decomposes a claim C (P, M, X) into subclaims C (P1, M, X),. . . , C (Pn, M, X).
Suppose that this strategy is justified, and that ∀i = 1..n, each subclaim C (Pi,
M, X) holds. We proceed by showing that for any execution x ∈ X, P(x) holds.

Consider an execution x ∈ X. By assumption, properties P1(x), . . . , Pn(x)
hold; therefore, x ∈ XP1 ∩ XP2 ∩ . . . ∩ XPn

(where each set XP1 is defined as
in Definition 6). Since this strategy is justified, XP ⊇ (XP1 ∩ XP1 ∩ . . . ∩ XPn

)
and thus x ∈ XP. By the definition of XP, P(x) holds. Since x is an arbitrary
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Fig. 3. A template for a justified property decomposition strategy.

element of X, P(x) holds for every x ∈ X. Therefore, (C (P1, M, X)∧ . . . ∧C (Pn,
M, X)) =⇒C (P, M, X) when the property decomposition strategy is justified. 
�

Figure 3 shows a general template for justified property decomposition strate-
gies, however the exact form of the justification of these strategies depends on
the relationship between properties P and {P1, . . . ,Pn}. We identify several strat-
egy subtypes based on the form of these properties, and show the methods of
justification used to give a deductive argument in each case.

Property Decomposition Strategies as Proof by Cases. When a property
P is expressed as the conjunction of a set of properties P1, . . . , Pn, the property
decomposition strategy (C (P, M, X), {P1, . . . , Pn}) (which decomposes C (P,
M, X) into C (P1, M, X), . . . , C (Pn, M, X)) is analogous to a proof by cases.
Justification of these strategies is trivial, as every execution which satisfies all of
P1, . . . , Pn clearly satisfies (P1∧ . . . ∧ Pn).

Property Decomposition Strategies by Contrapositive. Given a set of
properties {PH1, . . . , PHn}, suppose P is a property where, for any execution
x, ¬P(x) ⇒ (PH1(x) ∨ . . . ∨ PHn(x)) (i.e., if P(x) does not hold, then some
PHi must hold). By contrapositive, this is logically equivalent to the expression
(¬PH1(x)∧ . . .∧¬PHn(x)) ⇒ P(x). Thus, if ¬PHi(x) holds ∀i = 1..n, then P(x)
holds. Therefore, the property decomposition (C (P, M, X), {¬PH1, . . . ,¬PHn})
is justified by contrapositive.

Property decompositions by contrapositive are used frequently in practice to
assert that a system is safe by arguing that all ways in which the system may
not be safe (i.e., all the hazards) have been mitigated. An example of a property
decomposition strategy by contrapositive is given by Str4 in Sect. 4.

Property Decomposition Strategies by Induction. Given a set of execu-
tions X of an LTS M = (S,A,Δ), let Pstate be a property that can be eval-
uated for individual execution states (i.e., Pstate: S → {True, False}). For any
x = {s0, (a1, s1) . . .} ∈ X, define the following properties:
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Fig. 4. Strategy Str1 of an FCS AC.

Pinit(x) = Pstate(s0)
Pind(x) = ∀i ∈ N,Pstate(si−1) =⇒ Pstate(si)
P(x) = ∀i ∈ N,Pstate(si)

A decomposition of the form (C(P,M,X), {Pinit, Pind}) is a property decompo-
sition by induction. By induction, if Pstate holds for all possible initial states and
if for any transition (s, (a, s′)), Pstate(s) ⇒ Pstate(s′), then Pstate holds for all
states. Thus, any execution that satisfies Pinit and Pind also satisfies P. Decom-
positions of this type are therefore justified as per Definition 6.

The subclaim C(Pind,M,X) holds if and only if Pind holds for every transi-
tion {si−1, (ai, si)} contained within some execution in X. Thus, if we define Xind

to be the set of all such executions (i.e., Xind: {{s, (a, s′)} : ∃x ∈X, (s, (a, s′)) ⊆
x}, the claims C(Pind,M,X) and C(Pind,M,Xind) are logically equivalent. The
form C(Pind,M,Xind) may be preferred, as the executions {s, (a, s′)} of Xind can
be partitioned based on the properties of the individual states/actions s, a, and
s′, which facilitates further decomposition using domain decomposition strate-
gies over these partitions.

An example of a property decomposition strategy by induction is shown in
Sect. 4 by Str1 (Fig. 4).

4 Applications

In this section, we demonstrate two ways to apply our formal strategies (Sect. 3):
(i) to create deductive AC arguments; and (ii) to augment existing AC strategies
by evaluating them against deductive strategies.

4.1 Creating Deductive ACs

Consider claim C1 : “The FCS never reaches a damaged state”. C1 can be
formalized as C (PC1, MFCS, XFCS), where MFCS is the FCS LTS model,
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XFCS is the set of all possible executions of MFCS, and PC1 is defined by
PC1(x) : ∀si ∈ x,¬Damaged(si)). We apply a sequence of strategies from Sect. 3
to C1 in order to develop an AC for the FCS with deductive reasoning steps.

Str1 : Property Decomposition by Induction of C1. By defining Pstate(s) :
¬Damaged(s), the property PC1(x) is representable in the form ∀s ∈ x, Pstate(s).
Thus, we may decompose C (PC1, MFCS, XFCS) using the property decompo-
sition strategy by induction Str1=(C (PC1, MFCS, XFCS), {Pinit,Pind}). Here,
Pinit asserts that the FCS begins in a non-damaged state, and Pind asserts the
FCS never transitions from an undamaged state to a damaged state. These terms
are formalized as:

Pinit({s0, (a1, s1) . . .}) = ¬Damaged(s0)
Pind({s0, (a1, s1) . . .}) = ∀i ∈ N,¬Damaged(si−1) ⇒ ¬Damaged(si)

Applying Str1 to C1 generates the two subclaims C (Pinit, MFCS, XFCS) and
C (Pind, MFCS, XFCS). As Str1 is justified by induction, Theorem 2 shows that
it is deductive. This decomposition of C1 is shown in Fig. 1, and the claims
C (Pinit, MFCS, XFCS) and C (Pind, MFCS, XFCS) are represented as C2 and
C3, respectively.

Section 3.2 shows that C (Pind, MFCS, XFCS) is logically equivalent to the
claim C (Pind, MFCS, Xind), where Xind is the set of all state-action-state transi-
tions of executions in XFCS (i.e., Xind: {{s, (a, s′)} : ∃x ∈XFCS, (s, (a, s′)) ⊆ x}).
We represent C3 in this equivalent form C (Pind, MFCS, Xind) in order to further
decompose it using a domain decomposition over system actions.

Str2 : Domain Decomposition of C3 over Action Types. The set of FCS
actions AFCS consists of system actions (ASYS) and environment actions (AENV).
By partitioning AFCS into subsets ASYS and AENV and mapping each transition
(s, a, s′) to the action a, we decompose C3 using the domain decomposition
strategy Str2=(C (Pind, MFCS, Xind),DStr2, DStr2, fStr2) as per Definition 5,
with terms defined as follows:

DStr2 = AFCS (all FCS actions)
DStr2 = {ASYS, AENV}
fStr2(S × (A × S)) −→DStr2 : fStr2(s, (a, s′)) = a.

Str2 is justified, as ∀(s, (a, s′)) ∈ Xind, fStr2(s, (a, s′)) ∈ DStr2. It is also complete,
as DStr2 = DStr2[0] ∪ DStr2[1] (i.e., ASYS ∪ AENV). Therefore, Str2 is deductive.
Figure 5 shows Str2 with subclaims C4 and C5, as well as explicit completeness
and justification claims.

Strategy Str3 decomposes C5 using a similar decomposition to Str2 over
individual FCS actions. This generates subclaims C6 -C9, each of which argues
over all state-action-state transitions of a particular FCS action in Xind. For
example, C9 has the form C (Pind, MFCS, Xclean), where Xclean= {(s, (a, s′) ∈
Xind: a =cleanTile}.
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Fig. 5. Strategies Str2 and Str3 of an AC for the FCS system.

Str4 : Property Decomposition of C9 by Contrapositive. Consider the
properties Phaz(s, (a, s′)) and Pobj(s, (a, s′)) given by Phaz(s, (a, s′)) :“The sys-
tem is on a hazardous tile in state s” and Pobj(s, (a, s′)) : “The system is on a tile
containing an object in state s”. As described in Sect. 2.1, the cleanTile action
can only damage the FCS if it is performed on a hazardous tile or on a tile con-
taining an object. Therefore, for any x ∈Xclean, ¬Pind(x) ⇒(Phaz(x)∨Pobj(x)).
By contrapositive, (¬ Phaz(x) ∧ ¬ Pobj(x))⇒ Pind(x), thus the property decom-
position Str4=(C (Pind, MFCS, Xclean), {¬Phaz, ¬Pobj}) is justified by contra-
positive, and, by Theorem 2, is deductive. Figure 6 shows Str4.

By decomposing claims using the provably deductive strategies in Sect. 3,
we generate an AC with reasoning steps that are not susceptible to uncertainty
or fallacies. These deductive strategies ensure that each strategy’s parent claim
holds provided that all of its subclaims hold. To evaluate whether the AC’s top-
level claim holds, reviewers only need to assess the remaining unformalized AC
artifacts (e.g. the evidence used to support decomposed claims).

4.2 Evaluating Existing ACs

We now evaluate the LMS AC fragment in Fig. 1 by comparing it to a deductive
domain decomposition, and augment the argument accordingly to produce a
deductive reasoning step.

In Fig. 1, C1 asserts that the property PC1: “When a failure is detected, the
system notifies the driver” holds over the set XC1 of all executions in which a fail-
ure occurs. C1 is then decomposed over the domain DStr1 of LMS subsystems,
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Fig. 6. Strategy Str4 of an FCS AC.

and the relation fC1 maps executions in XC1 to the corresponding subsystem
which failed. However, this decomposition is not justified as per Definition 5,
since any execution in which a failure occurs due to interactions between mul-
tiple subsystems is not mapped to DStr1 by fC1. Furthermore, there is no com-
pleteness claim to assert that all subsystems are covered by subclaims in this
decomposition.

To address these fallacies, we augment the LMS AC fragment to match the
form of a deductive domain decomposition strategy (see Fig. 7). We extend
the domain of decomposition DStr1 from LMS subsystems to all possible LMS
failure cases, and introduce a new child claim C5 to cover additional failures
which result from the interactions between subsystems. The completeness claim
C6 is then added to assert that the subsystems identified in C2, C3 and C4 are
the only subsystems, and that every possible failure case is a subsystem failure
or a failure in the interaction between subsystems. Finally, a justification node
J1 is introduced to define a complete mapping from the set XC1 to the set of
LMS failure cases (i.e., by mapping each execution where the system fails to its
corresponding failure case). This strategy now has the exact form of a domain
decomposition strategy (see Definition 5), and thus, by Theorem 1, is deductive.

While completeness or justification of an argument may appear obvious in
some scenarios, others may require a more careful consideration. In this example,
by explicitly considering the mapping between executions and domain values, we
found that not all executions were mapped onto the strategy’s domain and thus
the argument was not valid. Rather than leaving argument completeness and
justification as implicit assumptions (as is often done in practice), our approach
explicitly addresses these questions and gives AC reviewers an argument artifact
to assess. Furthermore, the logic of these decompositions is independent of how
the system and its executions are modeled.



46 T. Viger et al.

Fig. 7. An augmented version of the LMS AC fragment.

5 Related Work

Several tools semi-automate the workflow of AC development by integrating for-
mal and informal reasoning. For example, NASA’s AdvoCATE toolset [11,24]
allows manually building AC fragments, and merging these fragments with
(i) fragments generated by formal verification tools; and (ii) information from
requirements and hazards tables [8]. D-Case Editor [21] is an Eclipse-based tool
that supports building dependability ACs, or D-cases, using a typed variant of
GSN [22,31]. The Evidential Tool Bus (ETB) [6] uses a Datalog variant to rep-
resent AC nodes and inference rules. Finally, the Isabelle/SACM [25] framework
translates SACM [28] ACs into Isabelle [26], to enable formal verification of ACs.
External tools can be integrated into the aforementioned frameworks. Thus, our
decomposition strategies can be plugged in as additional features to these tools.

Some of the aforementioned tools support parametrized patterns that are
comparable to our decomposition strategies. For example, AdvoCATE allows
building AC patterns, with semantics defined in terms of the possible pat-
tern instantiations [9,11]. This formalization was used to demonstrate allow-
able recursion and restrictions on pattern usage. D-Case Editor supports
parametrized patterns [22,23] which were formally defined, together with their
scoping rules. The D-Case/Agda extension [31] can be used to formalize and
verify D-Case patterns using the Agda functional programming language [27].
Our work is similar to the former pattern-formalization approaches in that we
formally define AC patterns or templates, to facilitate their verification. An
additional contribution in our work is that our decomposition strategies and
their templates are provably deductive, and thus are not vulnerable to logical
reasoning fallacies.

AdvoCATE also facilitates building hierarchical [12] and modular [10] ACs,
where both concepts were formalized together with their allowable operations
and desirable properties (e.g., well-formedness). D-Case Editor supports build-
ing modules [22] which can be formalized and verified using D-Case/Agda [31].
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AdvoCATE also supports querying ACs [7], with formalized underlying syntax
and semantics of queries and their resulting views. The formalization of AC
hierarchies, modules, and querying operations are complementary to our work.

6 Conclusion and Future Work

In this paper, we have formalized the semantics for a set of provably deductive
AC decomposition strategies that guard against logical reasoning fallacies. We
demonstrated the usefulness of these strategies by leveraging them as templates
in two scenarios. First, we used our strategy templates to build deductive argu-
ments for a simple floor-cleaning system (FCS) example. Second, we used our
templates to evaluate a fragment of an AC for an automotive lane management
system (LMS). This application identified fallacies in the AC, which we then
addressed. Our work adds to the literature by identifying strategy templates
(or patterns) that are provably deductive, and hence are invulnerable to logical
reasoning AC faults, by construction.

The next step is to provide tool support for our strategy templates, imple-
menting them on top of our AC tool MMINT-A [13], and working with our
industrial partner to evaluate the approach on large ACs. While Sect. 4 shows
how our approach can be used to create deductive ACs and evaluate existing
ones manually, automated tool support can facilitate the use of our strategies in
practice. Our aim is to generate deductive decompositions by prompting users to
describe the defining characteristics of the decomposition (e.g., decomposition
property, domain of decomposition), and producing strategies based on these
characteristics and our deductive templates. Such automation will enable AC
developers to create deductive assurance arguments without requiring them to
fully understand all aspects of the formalization of our strategies. We also aim to
expand the library of patterns, e.g., to address a range of AC uncertainties [5].
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Abstract. The transformation of maritime navigation and control systems into
an integrated System of Systems (SoS) consisting of a heterogeneous mixture of
individual software-intense and safety-critical subsystems poses new challenges
for the verification and validation of the overall system composition. Other than
in traditional maritime architectures, the software-reliant structure of a SoS can
be subject to change while already in operation, as features can be updated, errors
can be fixed, or processes can be optimized. Thus, the alteration of amodule on the
system level necessitates the reassessment of compliance with the corresponding
certification records. In this work, we present an approach on how the modules of
a SoS can be associated through extended safety contracts with the corresponding
safety case specification to verify the impact of a modification before deployment.
Moreover, for each type of update (perfective, corrective, adaptive), the elements
that need to be reassessed on the associated safety case are identified. Finally, the
concept is established on a safety-critical module of the Maritime Traffic Alert
and Collision Avoidance System (MTCAS) in order to assess the applicability of
the developed approach.

Keywords: System of Systems · Updates · Contracts · Certification

1 Introduction

Traditional ship-side and vessel traffic service (VTS) architectures undergo a change,
shifting away from manually controlled, mechanical and electrical dominated archi-
tectures towards software-intense System of Systems (SoS) consisting of a heteroge-
neous network of safety-critical subsystems providing navigational support or (semi-)
autonomous control structures up to fully autonomous Maritime Autonomous Surface
Ships (MASS). Different to traditional shipboard control systems, their functionality
relies intensively on software-based navigation and steering systems. This enables the
system owner or the supplier of a containing module to apply changes to a system that
has been handed over to the customer and is already in full service. Moreover, updates
of individual system modules can be supplied remotely and in form of a new feature
demanded by the customer (adaptive update), a safety-critical fix of a malfunctioning
module (corrective update) or in form of performance improvements (perfective update).
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Hence, for the certification and classification societies responsible to verify the adher-
ence of safety standards and rules for maritime systems, the traditional way of certifying,
inwhich an extensive set of documents is compiled once for a fixed system configuration,
will no longer be sufficient. To detect whether a given certification remains valid after
being altered, it becomes necessary to trace the impact of the change to its safety case
by monitoring, testing, or formally verifying and validating changed modules and their
effects on the encompassed SoS [1].With certification costs estimated around 30%of the
lifecycle costs in the aerospace domain [2], as well as 25–75% of the development costs
of a product [3], the reduction of the recertification overhead after an update becomes a
valuable goal [4].

In recent years attempts to improve the maintainability of safety cases by applying
safety contracts to the software modules have been proposed [5]. Safety contracts allow
the safety-related properties of a system or its subsystems to be formalized in modular
form on the basis of assumptions and guarantees. We extend those approaches by creat-
ing a mapping between the modules of the system and the corresponding modular safety
argument by extending the systems safety contracts with information about the corre-
sponding safety case elements. Based on the established linkage between the system
and safety case modules, the impact of change for each update type is demonstrated. In
doing so, we provide support for certification authorities and system owners to identify
the parts of the safety argument impacted by a change.

Our work is structured as follows: In Sect. 3, the concepts of modern maritime
bridge architectures and the current maritime certification processes are introduced.
Subsequently, Sect. 4 outlines the correspondence between system architecture modules
and their related safety case elements along the development process. By enhancing the
associated safety contracts, we enable a bidirectional relation between system and safety
modules. Based on the identified dependencies, for each type of update the required
transformation on the safety case is shown. The result is a mapping from the module
of the system that is changed to the relevant and dependent parts of the corresponding
safety case. Finally,we illustrate our approachon theMaritimeTrafficAlert andCollision
Avoidance System (MTCAS) as one of the building blocks of the modularized bridge
system architecture and the capabilities and limits are evaluated. With this threefold
approach [4] we align a systematic analysis of existing concepts, the integration of
selected methods into a conceptual model and an evaluation based on an existing safety-
critical system from the maritime domain.

2 Related Work

The management of change in software systems and its relation to the related assurance
cases based on assume-guarantee contracts has been intensively explored by the research
group around Jaradat, Bate and Kelly [5, 6]. The authors present methods to identify
the parts of the system most sensitive to a change and use contracts to guide the main-
tenance process. The approaches are closely aligned with the Modular Software Safety
Case (MSSC) process developed by the Industrial Avionics Working Group’s (IAWG),
which aligns the software implementation with the safety argument by applying two
types of contract relationships for the modules of the system as well as their interdepen-
dencies [7, 8]. Similarly, [9] considers eight categories of change in anARINC 653 based
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Integrated Modular System (IMS) for the aviation domain. Likewise in the automotive
domain, [10] presents an approach for AUTOSAR embedded applications. Salameh and
Jaradat [11] embedded the aforementioned contract-based maintenance methods into
an encompassing change management framework. Furthermore, [12, 13] demonstrate a
tracing approach based on Digital Dependability Identities (DDI) that provide tracing
measures for a system or its modules along its lifetime. From a structural perspective, the
authors in [14] provide an overview of the design and argument patterns used in various
domains. Finally, [15] present assurance case reuse approaches for evolutionary sys-
tems by applying evolutionary assurance case modeling processes. We built upon these
approaches by establishing an adapted bidirectional dependency relationship between
the requirements of integrated maritime bridge systems and amodular classification pro-
cess to identify the elements that need to be re-evaluated after an update. In the following,
we highlight the requirements unique for the maritime domain.

3 Background and Motivation

3.1 Integrated Bridge Systems

Today’s ship systems are equippedwith a combination of sensors, actuators,workstations
and communication systems. The heterogeneous system landscape of safety-critical sys-
tems on modern vessels range from (i) real-time to non-real time systems, (ii) mixed
criticality states and (iii) single- to multi-core hardware that is connected either (iv)
directly or through a redundant bus-network [16]. Moreover, the systems differ in terms
of criticality and the certification specification. While in the past the overall system
functionality has been developed and implemented independently, today interdepen-
dent systems are unified into an Integrated Bridge System (IBS), which is defined by
the International Maritime Organization (IMO) as “a combination of systems which
are interconnected in order to allow centralized access to sensor information or com-
mand/control from workstations, with the aim of increasing safe and efficient ship’s
management by suitably qualified personnel” [17]. IBS thus offer monitoring and con-
trol functions that converge on the ship’s bridge and are visualized and made available at
a central location. The realization of individual functional concepts supporting manned
or unmanned ship operation are depicted from the environmental perception towards the
provided system functionality in Fig. 1.

For example, a typical system functionality of an IBS are navigational support fea-
tures (depicted on the left), which rely on sensors like GPS, Radar and AIS (as depicted
on the right), process the situation on one or more workstations (e.g. industrial PCs)
through the modules of the system such as Route Planning, Traffic Surveillance and
display the sea-chart on an Electronic Chart Display and Information System (ECDIS)
(depicted in the middle) [18].

A module M in an IBS describes a subsystem from a SoS perspective and will
be used in the following to describe the unit of exchange in this work. The modules in
turn, rely on sensors, communication systems, actuators and environmental information.
By selecting a set of modules in combination enables the defined feature set of a SoS
composition.
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Fig. 1. Realization of the functional scope of a ship’s bridge system based on [19, 20]

3.2 Software Maintenance Processes on Maritime Software Systems

To enable a software-oriented maintenance process based on the IMO guidance for
updating shipborne equipment [21] and ISO standard 14764 [22] on software mainte-
nance, an industry standard has been established by a joint working group comprising
international maritime electronics suppliers [23], as well as recommendations by the
International Association of Classification Societies (IACS) [24].

The proposed maintenance processes can occur at different phases of the lifecycle of
the product, such as design time, development time, during the testing and verification
stages, or when the vessel is already in operation. During all these phases, the updated
modules can be integrated into the existing system as part of an onboard maintenance
process, during onshore maintenance or as remote maintenance process.

The maintenance activities are triggered by the time and place, operational mode,
the criticality of the modules and the category of maintenance that was detected.
Finally, different stakeholders have to be addressed during the update phases, including
manufacturers, shipowners or classification societies [23].

3.3 Maritime Safety Assessment and Goal-Based System Certification

Shipping companies, shipbuilders and suppliers have to document safety-relevant
requirements, design decisions and results of the validation of the ship’s system exten-
sively in order to obtain the operating license from a certification authority (e.g. DNV
GL, Bureau Veritas). To obtain such a release, shipbuilders have so far followed a rigid
set of rules and design standards [25]. The safeguarding of maritime systems is char-
acterized by global and local guidelines, which are derived primarily from historical
experience. For the most part, prescriptive rules have to be followed rigidly, which has
been sufficient for a traditional shipbuilding process, but reached its limits with software-
intense IBSs. Up until now, the IMOprovides two types of safety analysis: Formal Safety
Assessment (FSA) and Goal-based Standards (GBS). Both FSA and GBS are risk-based
approaches that classify a system as safe as long as the calculated risk of the system
does not exceed an acceptable threshold [25]. However, in case of an update, the system
owner has to prove to the certification authority that the system stayed within the risk
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threshold that has been classified beforehand [26]. In both cases, the system developer
must demonstrate in the burden of proof that his system meets its safety requirements.
To this end, he must combine the collected evidence and tests and structure them in such
a way that he can provide the certifier with credible and structured evidence that the
specified objectives are met and hazards can be ruled out.

In order to structure the evidence and to put the collected evidence into context with
the goals and requirements to be achieved, the documents can consist of prose, tables
or a graphical notation, such as the Claims Argument Evidence or the Goal Structuring
Notation (GSN) [5]. In this work, GSN is used to derive a modular Safety Argument
and track changes in the model accordingly. GSN uses a tree-like model, as depicted on
the right side of Fig. 3 and Fig. 5, that is made up of a Top-Goal (rectangles) which is
solved by a structure of underlying Strategy (parallelograms) and Sub-Goal (rectangles)
Elements, which in turn are supported by Solution (circles) and Context (squashed
rectangles) Elements.

4 Modular Updates in Integrated Maritime SoS

4.1 Structural Augmentation of IBS for Change Management

To lay the foundation for a certifiable update process, the SoS architecture of an IBS
needs to be adapted to establish traceability.When updating one of the systemsmodules,
two scenarios can be assumed: Either an existing legacy system is altered or an upcoming
system composition is planned with regard for future maintenance. In both scenarios, the
system owner and/or the supplier of one module either have restricted knowledge about
the underlying system architecture and/or about internals of any module other than their
own (equally to a Safety Element out of Context (SEooC) according to ISO 26262 in
the automotive domain [27]).

To achieve exchangeability and control the impact of the change, a service-oriented
approach for the modules is proposed, similar to Software Components (SWC) in
AUTOSAR [10]. Each module fulfills a well-defined set of services and interacts with
its environment through controlled interfaces. The composition of individual modules
M1 andM2 into an encompassing SoS linked at their interfaces via connection a, b and c
and annotated with module contracts is depicted in Fig. 2 from the perspective of the
logical model.

In order to formally describe the behavior of the system’smodules and to anchor them
within the GSN model, the respective modules are annotated with assume-guarantee
(A/G) contracts. A/G contracts describe the properties of its associated module by guar-
anteeing a defined behavior as long as the assumptions made about its environment
remain valid.

Module M1

SoS
Module M2

ba c

CM Assump ons
Guarantees

Assump ons
Guarantees

CSoS Assump ons
Guarantees

1 CM2

Fig. 2. Logical system perspective of a SoS, its modules and the attached A/G-contracts
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Annotated System and safety case modules provide formal methods on refine-
ment, conjunction, and composition of individual modules, denoted respectively by
the symbols �,∧ and ⊗ [28, 29].

A contract can be represented as a tupleC = (A,G)with A depicting the assumption
about the working environment of a module M and G the properties, which M pledges
to fulfill assuming A to be true [29]. For the contracts CM1 = (

AM1 ,GM1

)
and CM2 =(

AM2 ,GM2

)
the composition of contracts CSoS = CM1 ⊗ CM2 is given by [28]:

ACM1⊗CM2
= weakest

⎧
⎨

⎩
A

∣
∣∣∣∣∣

A ∧ GM2 ⇒ AM1

and
A ∧ GM1 ⇒ AM2

⎫
⎬

⎭
(1)

GCM1⊗CM2
= GM1 ∧ GM2 (2)

The assumption ACM1⊗CM2
is defined by the weakest Assumption A for that A∧GM2 ⇒

AM1 andA∧GM1 ⇒ AM2 holds. The guaranteeGCM1⊗CM2
is described by the conjunction

ofGM1∧GM2 . The aforementioned specifications allow for amodularized systemdesign,
which eases the exchange of a module and track its impact, as it induces properties such
as high cohesion, low coupling, well-defined interfaces and information hiding [8].

4.2 Contract-Based Link of System Level and Safety Level Contracts

The contract-based system model enables the system owner to compose a complete
bridge architecture from its modules and verify the compatibility on the contract level
through Virtual Integration Testing (VIT). In our minimal example in Fig. 2, for the
contract based refinement of modules into a SoS denoted as CM1 ⊗ CM2�CSoS the
following integration conditions need to hold [30]:

For contracts CSoS = (A,G),CM1 = (
AM1 ,GM1

)
and CM2 = (

AM2 ,GM2

)
the integra-

tion CM1 ⊗ CM2�CSoS holds if and only if A ∧ GM1 ⇒ AM2 and A ∧ GM2 ⇒ AM1 and
GM1 ∧ GM2 ⇒ G.

A system owner can utilize the contracts to check from a top-down perspective whether
his system composition remains valid after an update. Hence, the ambition for an update
of a previously certified model would be the traceability of the overall impact of the
change for each type of update. Similar to [6], the aim of this work is the realization of
module and evidence traceability. Module level traceability denotes the traceability from
the safety argument to the module of the system, while evidence traceability describes
the traceability of safety evidence across system artefacts [5]. We argue that even in only
partially formalized and integrated system contexts, as often present in testing scenarios,
the attribution of a module with contracts can support its impact analysis in narrowing
down the cause of contract breach.

Our approach is depicted in Fig. 3 and shows the relation between different phases
(Design, Safety Analysis, Development and the Safety Case) in the assurance process.

Beginning with the functional model, the functional requirements are derived and
subsequently translated into functional contracts. Similarly, the logicalmodel is designed
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contracts

and the interactions between modules become apparent. From this perspective, relation-
ships between the individual modules can be defined and formalized within dependency
contracts. In the safety analysis phase, the safety requirements are obtained (e.g. through
Hazard and Risk Assessment (HRA)) and transformed into safety contracts. The con-
tracts of each phase overlap in their description of the module functions and complement
each other. Thus, the provided functional scope of performance of one module can serve
as necessary environmental behavior of another module. Such a dependency must at that
point be mapped on the logical level and the safety analysis.

The contracts from the design phase (functional and logical model) as well as the
safety contracts derived from the safety analysis are merged and integrated within a
contract repository.With a module being developed, the requirements from the contracts
are realized and extended by technical contracts (e.g. CSoS ,CM1 ,CM2 ) that define the
interaction of modules on a technical level.

As different forms of contracts are derived from the individual phases of the devel-
opment process, our goal in this work is to enable top-down and bottom-up analysis
by extending the safety contracts. For this reason, we supplement the safety contract
with direct relations to the safety goals (e.g. G1.1.1,G1.1.3) and context elements (e.g.
C1.1) depicted in Fig. 3 as single dotted line. Furthermore, a relation between safety
evidence (e.g. E1.1.1.1,E1.1.1.3) to the module contracts (e.g. CSoS ,CM1 ,CM2 ) is implicit
and indicated as double dotted and dashed line. Finally, the dependency between the
module contracts and the safety contracts is illustrated as single dotted and dashed line.
This results in a bidirectional relationship of the safety arguments, the safety evidence,
and the system’s modules through the safety contracts as intermediary. The connections
between the individual parts are described further in the following.

Safety Contract to Safety Goal: The safety contract derives from the safety analysis
as well as the functional and dependency contracts. We extend the safety contracts
with additional reference to the module contracts and the (sub-)goals of the safety case.
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Hence, when updating a module on the system level, the safety contracts touched can
be identified automatically.

Furthermore, the reference to the safety-goals derives naturally as they represent
a formalization of the latter. However, there isn’t a one-to-one dependency between
a safety contract and the safety case, as safety goals can be established by the safety
analysis as well as stipulated by the classification guidelines.

Safety Contracts to Module Contract to Safety Evidence: Themodule contracts are
realizations of the safety contracts. Thus, a many-to-many mapping between the two
contract-types can be implicit. When exchanging a module on the system level, a num-
ber of the technical module contracts is touched, which in turn are related to one or
many safety contracts. When knowing which safety contracts and module contracts
become invalid after an update, it is possible to identify which of the supporting evi-
dence (e.g. VIT, module or system tests) contains the individual modules and may have
to be repeated.

The development phase and the safety analysis phase can take place in parallel or
consecutively. In principle, however, both phases complement each other. As described
beforehand, in our modular approach the unit of exchange is defined as one module
(e.g. M1,M2). Though, based on the design process, a module realized in a system
composition can have different granularities and relationships to its logical model due
to external factors in the technical realization. Moreover, the safety case structure does
not necessarily correlate in a one-to-one mapping with the system elements [6].

The system designer and developer need to incorporate both, a top-down as well as a
bottom-up analysis in case of a change. A top-down analysis traces the changes from the
system-domain to the safety argument, while a bottom-up analysis follows the impacted
safety-argument elements to their related evidence [5, 11]. The linkage between safety
contracts to module contracts and the safety goals and evidence on the safety allows a
bidirectional traceability from the system level to the certification side and vice versa. To
demonstrate the bidirectional dependency, in the following the different kind of updates
and their impact on the safety case will be shown along these connections.

4.3 Impact of Different Update Types

In the following, we will show how the three different kind of update types, namely
adaptive, corrective, and perfective updates, can be applied to one of the modules of the
SoS. It can be differentiated between the before- and after-state of a module once it has
been updated. In detail, any kind of change to a service-oriented module can affect a
combination of either (i) an interface change, (ii) a change in the implementation and/or
(iii) a contract change (as highlighted for each update type in Fig. 5). For an interface
change, one or more of the interfaces of the module can be altered, new interfaces can
be added or existing ones can be removed. In case of an implementation change, the
behavioral model is reformed or the architectural structure of the system composition
will be altered.A contract change, on the other hand, includes themodification of existing
contracts or the introduction of new contracts [31]. The system owner can identify the
faulty behavior, either by testing or monitoring the contract compliance of the module or
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system. A faulty system composition arises if the independent implementability property
as defined in [28, 29] of the contract composition has been violated:

For all contracts C1,C2,C
′
1 and C

′
2, if C1 is compatible with C2 and C

′
1�C1 and

C
′
2�C2 hold, then C

′
1 is compatible with C

′
2 and C

′
1 ⊗ C

′
2�C1 ⊗ C2.

Acontract is compatible if and only ifA �= ∅. Two contracts are compatible ifC1⊗C2
is defined and compatible. Hence the property is violated when an updated module
iiia) C

′
1is not compatible withC2 or iiib) does not refine C1. Moreover, the contract can

become iiic) inconsistent after the update, when its guarantee remains always unfulfilled.
In the following we differentiate the changes for the individual types of updates [29].

Corrective Update. A corrective update fixes an error in the system code and by that,
can cause changes to the assumptions and guarantees of the module contract. Due to a
corrective update themodule interfaces need to be added or be removed, the assumptions
and guarantees of the contract can change, as well as the implementation within themod-
ule. Therefore, C

′
1 can become incompatible, inconsistent and and/or not a refinement

of C1 anymore. Thus, it has to be established which of the extended safety contracts
are referencing to the modules of the system and ensured that the change does not vio-
late either the guarantees from a safety perspective or the contractually secured safety
objectives. In addition, it is possible to determine at system level which dependencies
the exchanged module has. For this purpose, the extent of the changes must be checked
on the basis of the displacements and the neighboring modules to which it is transferred.
The module contracts enable VIT to detect ripple effects before deployment [29]. In the
worst case, all modules are functionally dependent, so that the entire system must be
conservatively re-tested.

Perfective Update. In case of a perfective update, after the replacement of a module
its services provided and its interfaces stay the same from the functional and logical
perspective. For, the contracts it can be assumed thatC

′
1�C1 and the independent imple-

mentability property has not been violated. However, performance measures for the
services at the module interfaces are improved and need to be tested first. Furthermore,
the updated module might promises to deliver a better performance, but lack the same
reliability as before. Hence, the authority responsible for (re-)certifying the system com-
position needs to assure the performance improvement, or at minimum, reassuring the
compliance with the guaranteed boundaries defined in the contract. Hence, from a safety
case perspective, only the evidence level is affected and needs to be updated to support
the safety arguments.

Adaptive Update. An adaptive update adds an additional function to the module or
system. Hence, either a further module is added to the overall system or a module is
extended and, thereby, its contracts. It is therefore necessary to determine the extent of
the functional addition and which modules the exchange will affect. In our process in
Fig. 3, each of the individual phases need to be extended by an adaptive update. First the
functional and logical model are extended, which results in an adaptation to the existing
safety analysis in relation to the safety case. In the best case, the addition of newmodules
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only requires an addition to the safety analysis and the safety case, in the worst case a
structural adjustment of the entire system analysis. By isolating the modules, however,
the extent of the structural change can be contained. For this purpose, it is necessary to
determine which system requirements the module needs and to what extent the offered
and required services at the interfaces integrate with the other modules in the overall
system.

5 Evaluation

5.1 Modular System Composition of ‘MTCAS’

To demonstrate the link between a module on the system level and the safety case, we
apply the developed concept to the safety-critical Maritime Traffic Alert and Collision
Avoidance System ‘MTCAS’. In particular we demonstrate its modularized structure
and technical realization.

MTCASwas developed as pro-activemaritime collision avoidance system providing
context-sensitive vessel behavior prediction and collision avoidance techniques. Other
than traditional collision avoidance systems, MTCAS aims at reducing the number of
false alarms by intelligently predicting the route taken by its own-ship and the target-
ships, providing conflict assessment, offer resolution suggestions and supporting the
navigators during the maneuver negotiation [32].

Based on the spectrum of system configurations presented in Sect. 3.1, MTCAS can
be categorized as safety-critical system with soft real-time demands that runs on multi-
core platforms and is connected to the vessel via network. For a technical realization, a
hypervisor concept has been applied and a functional decomposition based on MTCAS
feature set has been realized as depicted in Fig. 4. Each feature of MTCAS is encap-
sulated within a partition for which a hypervisor enables temporal and spatial isolation
and contractual obligations could be expressed.
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5.2 Impact of Update Types on MTCAS

In the following, wewill show how the three different kind of update types, namely adap-
tive, corrective, and perfective updates, can be applied to one of the modules ofMTCAS.
In particular,we chose theConflictAnalysismodule to be exchanged as depicted inFig. 5.
The Conflict Analysis module is further composed out of two software modules: The
Closest Point of Approach (CPA) and the Ultimate Action Alarm module.
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For the purpose of this demonstration we assume, the ultimate action alarm to be
activated too late,meaning the approaching vessels are less than 30 s andwithin a distance
of 1 nm away from a critical ship pose (CSP). In this situation, the conflict analyzer needs
to forward the alarm to the conflict resolution module in order for MTCAS to calculate a
last-minutemaneuver such that the navigator of the vessel can take action until a collision
becomes unavoidable. For each of the update types of the conflict analysis module, the
parts of the module that change are highlighted in the illustration with cross stripes.
Furthermore, the mapping between the safety contract of the Conflict Analysis Module,
its technical contract CCA, as well as the safety case elements is depicted.

Corrective Update. In a corrective update scenario, the moduleConflict Analysis is not
alarming the Conflict Resolution module within a timeframe of [0, 30] s and therefore
breaching the guarantees of its technical contractCCA. A corrective update of theConflict
Analysismodule would cause an implementation, contract and interface change. AsCCA

is referred in the safety contract, it becomes apparent that for a renewal of the certification
the safety goals G1.1.1 and G1.1.2 and the evidence E1.1.1.1 have to be rechecked.

Perfective Update. A perfective update of the conflict analysis would improve the time
the Action Alarm or the CPA calculation are performed. Therefore, the implementation
of the conflict analysis would be optimized and the guarantees of the module contract
would be narrowed (e.g. Action Alarm within [0, 20] s). Therefore, the independent
implementability property has not been violated as C

′
1�C1. Since the perfective update

neither violates the safety contract nor the safety case, only the contract module has to
be adapted in the example. Though, the technical specification has not been violated,
the evidence E1.1.1.1 still needs to be renewed to support its sub-goal.
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Adaptive Update. In the case of an adaptive update, a functional extension is made,
or the module must follow regulatory adjustments, so that the structure of the Conflict
Analysis module changes. Similar to a corrective update, the implementation, contract
and interfaces change. If one were to assume that a regulatory requirement stipulates
that the redundancy principle should be incorporated into the Conflict Analysis module,
then the module must be available twice. This would result in a new system composition
C1⊗C2⊗C3 for that the compatibility and consistency has to be tested, a new safety goal
module such as G1.1.3, which integrates the redundancy principle has to be integrated.
Finally, the safety contract must be extended and the module must be divided into
redundant modules so that the fail-safe feature of one module is ensured.

6 Discussion

With maritime navigation and control systems becoming tightly interconnected and
intensively based on software systems, a new approach for safety assurances and relia-
bility becomes apparent and raises the question how to control integration process and
the change management. Our work demonstrates how a maintenance process can be
enhanced by formal methods and linked to the respective parts of the safety case.

However, today’s operating safety-critical systems in domains like aviation, mar-
itime, railway, automotive or within the industry, have been grown historically, lack
formal specifications, performance measures, standardized interfaces and can be out-
dated. Therefore, the biggest challenge for future work will be support of the transition
phase and gain momentum for a general acceptance in the industry.

Furthermore, though one may naively assume it at first, safety-critical systems com-
posed of independent modules can be expected to be comprehensively declared safe by
composing the safety arguments of its individual modules. The presented approach can
point to the relevant parts of the safety case, but still requires expert knowledge when
examining the effect of an update on the system.

Hence, we raise no claim to completeness, especially in the areas of timing behavior
and impact analysis. In future works the guarantees for timing and resource allocation
in IBS need to be narrowed across all layers of the system. Furthermore, the impact
of the change needs to be contained, identified and measured along the network of
dependent modules. This work provides a first step in both directions by using contract
specifications and modularization techniques.

Finally, while the presented technique does support a certification agency in re-
evaluating a safety case for a SoS, it does not attempt to automatically recertify the
system at hand. Forthcoming approaches have to include monitoring capabilities, paral-
lel running feature updates and mode management methods to support safety arguments
with increased and more targeted safety evidence. We will extend our approach with
dependability analysis techniques embedded in a comprehensive verification and vali-
dation infrastructure to support external auditors and technical reviewers with a broader
set of information about the impact of a change.
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62 G. Hake et al.

References

1. Denney, E., Pai, G., Habli, I.: Dynamic safety cases for through-life safety assurance. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy,
pp. 587–590. IEEE (2015)

2. Cleaveland, R.: Formal certification of aerospace embedded software. In: National Workshop
on Aviation Software Systems: Design for Certifiably Dependable Systems (2006)

3. Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley Longman Publishing Co.
Inc., Boston (1996)

4. Bate, I., Hansson, H., Punnekkat, S.: Better, faster, cheaper, and safer too—is this really possi-
ble?. In: Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies
Factory Automation (ETFA 2012), pp. 1–4 (2012)

5. Jaradat, O.: Contracts-Based Maintenance of Safety Cases. Mälardalen University Press,
Västerås (2018)

6. Jaradat, O., Bate, I., Punnekkat, S.: Facilitating the maintenance of safety cases. In: Kumar,
U., Ahmadi, A., Verma, A.K., Varde, P. (eds.) Current Trends in Reliability, Availability,
Maintainability and Safety. LNME, pp. 349–371. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-23597-4_25

7. Industrial AvionicsWorking Group: Modular Software Safety Case Process Overview (2012)
8. Fenn, J.L., Hawkins, R.D., Williams, P.J., Kelly, T.P., Banner, M.G., Oakshott, Y.: The who,

where, how, why andwhen ofmodular and incremental certification. In: 2nd IET International
Conference on System Safety 2007, London, pp. 135–140. IEEE (2007)

9. Nicholson, M., Conmy, P., Bate, I., McDermid, J.: Generating and maintaining a safety argu-
ment for integrated modular systems. In: 5th Australian Workshop on Industrial Experience
with Safety Critical Systems and Software, Melbourne, Australia, pp. 31–41 (2000)

10. Martorell, H., Fabre, J.-C., Lauer, M., Roy, M., Valentin, R.: Partial updates of AUTOSAR
embedded applications - to what extent? In: 11th European Dependable Computing
Conference (EDCC), Paris, pp. 73–84. IEEE (2015)

11. Salameh, A., Jaradat, O.: A safety-centric change management framework by tailoring agile
and V-Model processes. In: Presented at the 36th International System Safety Conference,
ISSC 2018 (2018)

12. Reich, J., Zeller, M., Schneider, D.: Automated evidence analysis of safety arguments using
digital dependability identities. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFE-
COMP 2019. LNCS, vol. 11698, pp. 254–268. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26601-1_18

13. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.: WAP:
digital dependability identities. In: 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pp. 324–329. IEEE (2015)

14. Gleirscher, M., Kugele, S.: Assurance of System Safety: A Survey of Design and Argument
Patterns. Unpublished Working Paper (2019)

15. Kokaly, S., Salay, R., Cassano, V.,Maibaum, T., Chechik,M.: Amodelmanagement approach
for assurance case reuse due to system evolution. In: Proceedings of the 19th International
Conference on Model Driven Engineering Languages and Systems - MODELS 2016, Saint-
Malo, France, pp. 196–206. ACM Press (2016)

16. Saidi, S., Ernst, R., Uhrig, S., Theiling, H., de Dinechin, B.D.: The shift to multicores in real-
time and safety-critical systems. In: 2015 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Amsterdam, pp. 220–229. IEEE (2015)

17. InternationalMaritimeOrganization (IMO): Integrated bridge system (IBS). http://www.imo.
org/en/OurWork/Safety/SafetyTopics/Pages/IntegratedBridgeSystems.aspx. Accessed 3 Mar
2020

https://doi.org/10.1007/978-3-319-23597-4_25
https://doi.org/10.1007/978-3-030-26601-1_18
http://www.imo.org/en/OurWork/Safety/SafetyTopics/Pages/IntegratedBridgeSystems.aspx


Towards Recertification of Modular Updates in Integrated Maritime SoS 63

18. Lund, M.S., Gulland, J.E., Hareide, O.S., Josok, O., Weum, K.O.C.: Integrity of integrated
navigation systems. In: 2018 IEEE Conference on Communications and Network Security
(CNS), Beijing, pp. 1–5. IEEE (2018)

19. Brandsæter, A., Knutsen, K.E.: Towards a framework for assurance of autonomous naviga-
tion systems in the maritime industry. In: Safety Reliability Societies in a Changing World,
pp. 449–457. Taylor & Francis, Abingdon (2018)

20. DNV GL: Class guideline - DNVGL-CG-0264 Autonomous and remotely operated ships.
DNV GL (2018)

21. International Maritime Organization: Guidance on procedures for updating shipborne
navigation and communication equipment (2010)

22. International Organization for Standardization: ISO/IEC 14764:2006 (2006)
23. CIRM/BIMCO Joint Working Group: Industry Standard on Software Maintenance of

Shipboard Equipment v1.0 (2017)
24. IACS: Recommended procedures for software maintenance of computer based systems on

board (2018)
25. Montewka, J., Wróbel, K., Heikkilä, E., Valdez Banda, O.A., Goerlandt, F., Haugen, S.: Chal-

lenges, solution proposals and research directions in safety and risk assessment of autonomous
shipping. In: 14th PSAM Conference Probabilistic Safety Assessment and Management
(2018)

26. Heikkilä, E., Tuominen, R., Tiusanen, R., Montewka, J., Kujala, P.: Safety qualification pro-
cess for an autonomous ship prototype – a goal-based safety case approach. In: Marine
Navigation, Gdynia, pp. 365–370. CRC Press (2017)

27. International Organization for Standardization: ISO 26262-1:2018 (2018)
28. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des. Autom. 12,

124–400 (2018)
29. Bebawy, Y., et al.: Step-UP!CPS Deliverable 3.1 - Formal Foundations for Modular Updates

Version 1 (2019)
30. Stierand, I., Reinkemeier, P., Bhaduri, P.: Virtual integration of real-time systems based on

resource segregation abstraction. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 206–221. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-
3_15

31. Bebawy, Y., et al.: Step-UP!CPS Deliverable 4.1 - Process Support and Technologies for the
Validation of Modular Updates - Version 1 (2020)

32. Steidel, M., Hahn, A.: MTCAS – an assistance system for collision avoidance at sea. In: Pre-
sented at the 18th International Conference on Computer and IT Applications in theMaritime
Industries, Tullamore (2019)

https://doi.org/10.1007/978-3-319-10512-3_15


Formal Verification and Analysis



A Functional Verification Methodology
for Highly Parametrizable, Continuously
Operating Safety-Critical FPGA Designs:

Applied to the CERN RadiatiOn
Monitoring Electronics (CROME)

Katharina Ceesay-Seitz(B) , Hamza Boukabache, and Daniel Perrin

CERN, European Organisation for Nuclear Research, 1211 Geneva 23, Meyrin,
Switzerland

{katharina.ceesay-seitz,hamza.boukabache,daniel.perrin}@cern.ch
https://home.cern/

Abstract. Electronic systems that are related to human safety need
to comply to strict international standards such as the IEC 61508. We
present a functional verification methodology for highly parametrizable,
continuously operating, safety-critical real-time systems implemented in
FPGAs. It is compliant to IEC 61508 and extends it in several ways.
We focus on independence between design and verification. Natural lan-
guage properties and the functional coverage model build the connec-
tion between system safety requirements and verification results, provid-
ing forward and backward traceability. Our main verification method is
Formal Property Verification (FPV), even for Safety Integrity Level 1
and 2. Further, we use constrained-random simulation in SystemVerilog
with the Universal Verification Methodology and a design independent
C reference model. When faults are discovered, the coverage model is
extended to avoid regressions. Automation allows the reproduction of
results and the reuse of verification code. We evaluate our methodol-
ogy on a subset of the newly developed CERN RadiatiOn Monitoring
Electronics (CROME). We present the challenges we faced and propose
solutions. Although it is impossible to simulate the full design exhaus-
tively, several formal properties have been fully proven. With FPV we
found some safety-critical faults that would have been extremely hard to
find in simulation.

Keywords: Functional verification · Safety · Formal Property
Verification · Constrained-random simulation · Natural language
properties · Functional coverage · Regression coverage

1 Introduction

When electronic systems are related to human safety, their whole life cycle needs
to comply with strict domain-specific standards [1–4]. The general standard for
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functional safety of electrical/electronic/programmable electronic safety-related
systems is the IEC 61508 [5]. Its latest version dates back to 2010. The ISO 26262
automotive standard is the most modern one. Its latest version is from 2018 [1].
One very strict, but also quite old standard for safety-critical hardware is the
DO-254 from 2000 [2]. The IEC 60532 standard for radiation protection instru-
mentation assigns Safety Integrity Levels (SILs) to certain radiation protection
functions [3]. These SILs and corresponding requirements for the design and
verification of safety-related electronic systems are defined in the IEC 61508 [5].
Since 2010, verification methodologies and electronic design automation tools
for digital design verification have progressed at a rapid pace. Our methodology
adds modern verification techniques to the IEC 61508’s V-model flow.

The most common technique for functionally verifying the Hardware Descrip-
tion Language (HDL) code for Field Programmable Gate Arrays (FPGAs) is still
simulation with directed tests [6]. Stimuli are applied to the inputs of the Design
Under Verification (DUV) and the values at the outputs are examined. For highly
parametrizable systems that have many input parameters of large bit-widths it
would be extremely time consuming to manually specify all interesting combi-
nations and calculate the expected output values. More flexible techniques like
constrained-random simulation are available [7]. But even with this method it
can be infeasible to simulate all possibilities for certain designs. Let’s imagine we
could simulate one combination at each CPU clock cycle of the workstation which
executes the simulation tool. It would take roughly 146 years to simulate each of
the possible input combinations of a single 64-bit vector. In reality, many CPU
clock cycles will pass until the simulator applies a new stimulus. While in many
cases it might be sufficient to simulate only representative values, it is often hard
to tell which value ranges are representative enough to catch all corner cases.
These might be rare inputs or combinations of extreme values of mathematical
functions or boundary values [8]. Furthermore, for some input values it might be
necessary to verify all possible combinations. Therefore, additional verification
techniques need to be applied.

We propose a functional verification methodology that combines the state-
of-the-art verification techniques of the semiconductor industry: Formal Prop-
erty Verification (FPV) and constrained-random simulation using the Universal
Verification Methodology (UVM) [9], both with functional and structural cov-
erage collection, while complying to IEC 61508. We evaluate them for a highly
parametrizable, continuously operating safety-critical real-time system. We pro-
pose a workflow that extends the verification process required by IEC 61508 with
the following concepts (see also Table 1):

– Independence between design and verification engineers
– Semi-formal methods during verification planning and requirements review
– Formal methods as main verification method even for SIL 1 and SIL 2.
– Constrained-random inputs for (expanded) functional black-box testing
– Coverage for regression test cases
– Traceability from requirements over coverage model and Natural Language

Properties (NLPs) to verification results and backwards
– Repeatability of the results
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Section 2 summarises related work and background. Section 3 provides an
overview of our methodology. Section 4 is an in-depth case study of applying
our methodology to the CERN RadiatiOn Monitoring Electronics (CROME).
Section 5 concludes the paper.

2 Related Work and Background

Independence between verification and design is very important in our method-
ology. Engineers are more likely to find faults in code written by other people
than in their own [10]. The IEC 61508 does not mandate it, it only refers to
application specific standards [5]. It is required e.g. by the DO-254 [2].

Formal Property Verification (FPV), also called assertion-based verification,
can exhaustively proof that a property holds on a design. Many engineers still
hesitate to use formal verification because of its perceived complexity [6,11]. A
campaign was launched at Intel to convince engineers of its benefits [11]. As
we will also demonstrate, additional faults can be found with FPV in designs
that had already been verified by simulation [11,12]. Often it is only used for
simple designs or control paths [8,13]. In [14], each design was first classified as
suitable or not for FPV. A design with our characteristics would not be suitable
according to their criteria. Opposed to that we decided to use FPV as main
verification method for a complex continuously operating safety-critical design
and got indispensable results. Our methodology shows how to integrate it into
a safety-standard compliant process.

Requirements-based testing is required by e.g. DO-254 [2] and ISO 26262 [1].
In [15], this method was extended with constrained-random simulation for
robustness testing, or in IEC 61508 terms “expanded functional testing” [5].
Researchers in [11] mentioned the difficulty of tracking verification progress in
FPV. We use the functional coverage model and Natural Language Properties
(NLPs) [16] as connection between system safety requirements and test results.
The methodology in [14] uses templates instead of NLPs that are automati-
cally translated into SystemVerilog Assertions (SVA) by a proprietary tool. The
importance of a consistent translation from properties in easily reviewable form
to formal languages was also shown in [17]. The lack of such methods can lead
to incorrect translations and additional iterations. In [18], each requirement was
related to a test case and coverage model item. Encountered faults were added
to a fault database, related to requirements and if necessary, the coverage model
was extended. We call the extension of the coverage model “regression coverage”.
Our approach (detailed in Sect. 3.2) was prior to that described in [19].

An advantage of FPV with SVA is that properties are proven directly on
the HDL code. Several formal verification methodologies for FPGAs exist that
require a translation from HDL to a formal model in a tool-specific language [13,
20]. To comply to safety standards, it would be necessary to derive this model
from the HDL code [17]. Any used tools need to be qualified [5]. We decided for
SVA, for which several qualified tools are available [17].
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Constrained-random simulation is very useful for highly parametrizable sys-
tems. A large number of stimuli can be applied without the need to explicitly
specifying them. Weighted constraints can be used to guide the randomization
in order to increase chances of generating scenarios of interest while also test-
ing unusual input combinations. This technique typically finds more faults than
directed testing [8,15]. SystemVerilog provides many features to ease the devel-
opment of flexible testbenches as well as properties and sequences which can be
used both in simulation and FPV [7]. The SystemVerilog UVM library facilitates
abstraction into transactions and verification code reuse. UVM was released in
2011, after the publication of the IEC 61508. It has been standardized in 2017 [9].

It can be distinguished between functional and structural coverage. The func-
tional coverage model states which scenarios are of verification interest. It is
defined by the verification engineers. Structural coverage measures how many
percentage of the Hardware Description Language (HDL) code have been cov-
ered [8]. A very effective coverage metric is Modified Condition/Decision Cov-
erage (MC/DC), where each condition has to affect the condition outcome at
least once. It is required by the DO-178 standard for software in avionics indus-
try [4]. Simulation tools provide this metric as well for HDL code [15]. Sys-
temVerilog covergroups, cover properties or assertions could also be added by
the designers to ensure that simulation test benches cover important implemen-
tation details [8,12]. This would not violate the concept of independence [12].

In this article we solely focus on functional verification. Measures for avoid-
ing failures due to random hardware faults need to be considered additionally
for any safety-critical design [5].

3 Our Functional Verification Methodology

IEC 61508 lists several techniques that can be chosen for verifying FPGAs.
Table 1 lists the techniques that we chose plus some techniques that we added
(A). The last 4 columns show the level of recommendation by IEC 61508 per
SIL. Due to the large number of inputs (∼200) of our design and our positive
experience with FPV that we will highlight in later sections, we decided to
use it as main verification method. We complement it with constrained-random
simulation using the UVM. For software, the IEC 61508 requires traceability
from system safety requirements to verification results and vice versa, as well as
repeatability of the verification activities. We adopt these points for FPGAs.

3.1 Verification Planning

Our workflow, detailed in Fig. 1, starts based on the system safety requirements,
design requirements and the specification. Consistency between the first and the
last two needs to be verified [5]. Each verification requirements is related to at
least one system requirement. If we encounter undocumented design decisions
during verification, we report them first to the requirements engineers rather
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Table 1. E/E/EP system verification requirements and techniques

Sections in IEC 61508:2010 - Part 2 Techniques Required by

SIL 1 SIL 2 SIL 3 SIL 4

7.9.2.1-4 Verification planning Semi-formal methods A A A A

7.9.2.5 Conformance to safety

requirements

Requirements traceability A A A A

7.9.2.7, Table B.1 Verification of

system design requirements

Inspection of specification – HR HR HR

Semi-formal methods R R HR HR

7.9.2.8, Table B.2, Table B.5, Table

F.2 Verification of the system design

and development

Simulation – R R R

Formal methods – – R R

Functional testing on module level HR HR HR HR

Expanded functional testing – HR HR HR

Black-box testing R R R R

Constrained-random input A A A A

Coverage of the verification scenarios R R HR HR

Coverage for regression testing A A A A

7.9.2.6, 7.9.2.10 Verification results

documentation

Requirements traceability A A A A

A ... Additionally added to our methodology, - ... No recommendation for or against the method by the

standard, R ... Recommended, HR ... Highly recommended

than the designers, to keep independence high. After consensus, requirements,
specification and verification items are updated by the responsible persons.

In our methodology, the functional coverage model builds the connection
between the verification requirements and the results. Each verification require-
ment needs to be described by at least one SystemVerilog covergroup or cover
property for simulation or by at least one NLP [16]. Within each method the
Mutually Exclusive and Collectively Exhaustive (MECE) principle should be fol-
lowed [21]. For our kind of design we identified the following grouping inspired
by [21] as useful: use cases, interesting scenarios, temporal relations, value ranges,
stress tests, negated requirements. Input values should only be covered if they
had an effect and verification passes [8].

The analysis of uncovered items might reveal internal design details. In order
to keep independence high, we suggest that the design engineers should analyse
the structural coverage reports and disclose as little information as possible to
the verification engineers. The goal should be 100% functional and structural
coverage. If it can not be reached, an analysis should be performed and it should
be justified why less than 100% are acceptable [15].

Natural Language Properties (NLPs) [16] are our coverage model items for
FPV. They are a semi-formal notation where natural language snippets are trans-
lated into SystemVerilog property snippets with a fixed N:1 mapping. E.g. one
can use different natural language expressions to describe the same formal state-
ment. “Expr implies that Seq” and “Every time when Expr: Seq” can be both
translated into and implication “Expr |->Seq”. Technical details can be hidden
by application specific NLPs, e.g. “Cycle is the start of a measurement cycle”
is translated into “($rose(mtValidxDI))”. That way an unambiguous connection
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Fig. 1. Verification workflow

between a NLP and a formal property is established. The NLPs can be easily
reviewed by requirements engineers unfamiliar with SVA. We use this review
step to increase independence between design and verification.

For formal verification we calculate functional coverage as follows:

Functional coverage[%] =
Nr. of proven properties

Nr. of properties
∗ 100.00 (1)

Or with weights, similar to SystemVerilog covergroup coverage [7]:

Weighted functional coverage[%] =
∑

i(wi ∗ pi)∑
i wi

∗ 100.00 (2)

wi = weight per property, pi = 1 if property was proven, 0 otherwise

3.2 Automated Verification

Formal Property Verification (FPV). Our main verification method is FPV
with SVA [22]. We use as little formal assumptions, i.e. constraints, as possible,
therefore even allowing scenarios that are outside the current specification. When
the specification changes, the same properties can be reused for verification.
This reduces the logic in the Cone-of-Influence of the formal properties, which
makes it easier for formal tools to conclude. The properties can be validated in
simulation by including the SystemVerilog file that contains the properties inside
the SystemVerilog DUV interface.

The number of states of continuously operating designs grows exponentially
with the number of input bits and necessary clock cycles for a proof. We model
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complex calculations with 64-bit operands in auxiliary code and use properties
to proof the equivalence of the DUV’s outputs with the modelled calculations.

We start with black-box verification, which means that we do not modify or
access internal signals and describe properties only in terms of input and output
relations. If these properties are inconclusive, we apply abstraction techniques
like inserting cut points on internal registers. That means that logic which drives
these registers is cut away. This reduces the complexity of the proof calculation
and therefore it is easier for the formal tool to conclude. A proof is valid for all
values that are possible within the bit-widths of these registers. This includes
the values that can be generated by the logic which is cut off. Therefore it is a
logically safe transformation that might introduce false negatives, but never false
positives [22]. Such techniques require the verification engineer to gain knowledge
about the code, thus violating the principle of independence. Therefore, we apply
these methods only after all independent black-box verification activities have
been completed.

Constrained-Random Simulation. We use constrained-random simulation
with the SystemVerilog UVM library whenever formal tools can’t deliver results
within reasonable time. Verification engineers develop a reference model based
on the requirements, independent from the design engineers. SystemVerilog can
communicate with a C or C++ model through its Direct Programming Interface
(DPI). The test bench simultaneously sends UVM transaction to the Design
Under Verification (DUV) and the reference model and compares the outputs.

Regression Coverage. Whenever a fault is found with simulation-based or formal
verification that occurs in a scenario that is not yet part of the coverage model
for simulation, we add it in the following way:

1. Identify input and output signal traces and their relationships that revealed
the fault. Add a new covergroup, coverpoint or coverpoint bin. If a sequence
of stimuli is needed to uniquely identify the scenario, use e.g. value transition
or expression coverpoint bins or cover properties. Internal signals can be used
if provided by the design engineer. We call these “regression covergroups/-
bins”.

2. Rerun the failing test and check that the new regression bin is covered in the
same simulation time step in which the test failed.

3. Rerun all other test cases and check that the new coverage item is not covered
by any other test that passes. If it is, the coverage item does not model a
unique scenario. Either add step 6 or modify the coverage item and start at
step 1.

4. The design engineer removes the fault of the DUV.
5. Rerun the failing test with the updated DUV. Check that the bin is still

covered in the same simulation time step. Check that the verification passes.
6. Optionally: Copy the failing UVM test and UVM sequence class. Rename

them to match the regression coverpoint bin and implement a stop condition.
The test can stop when it has covered its corresponding bin. Add this test
case to the regression test suite and do not modify it anymore.
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Regarding point 3: In a continuously operating system, a unique scenario that
leads to a fault might have to be described by long and complex signal traces and
their relationships. Sometimes it can be more efficient in terms of engineering
time to describe a signal relationship with a higher level of abstraction, which is
not uniquely identifying the faulty scenario, but which includes it.
Regarding point 6: As long as the calls to randomisation functions in the regres-
sion test case are not altered, it can be used to reproduce the same scenario.
SystemVerilog provides random stability as long as the order of new requests for
random values is not altered within a thread [7].

Documentation, Traceability and Reproducibility. Forward tracing as
shown by the arrows in Fig. 1 and backward tracing (by following the arrows in
reversed direction) of verification items is used to measure verification progress
and to provide verification evidence. All verification activities are documented
in a version control system and can be reconstructed and reproduced.

4 Application to the CERN RadiatiOn Monitoring
Electronics (CROME)

4.1 CERN RadiatiOn Monitoring Electronics (CROME)

CERN, the European Organisation for Nuclear Research, operates the world’s
most powerful particle accelerators. Particle collisions produce ionizing radiation.
The radiation protection group is responsible for protecting humans from any
unjustified radiation exposure. The CERN RadiatiOn Monitoring Electronics
(CROME) are the new generation of instruments used for measuring ionizing
radiation levels and triggering alarms and machine interlocks based on these
measurements [23]. Several hundred units will be installed.

The CROME Measuring and Processing Unit consists of a radiation detector
and an electronic system for data communication and storage, signal processing
and safety-related decision taking. The latter contains a heterogeneous Zynq-
7000 System-on-Chip (SoC) consisting of an ARM core and an FPGA. The ARM
core executes an embedded Linux and an application that receives around 100
parameters with ranges up to 64 bit over the network, which it transfers to the
FPGA. The FPGA performs the radiation dose and dose rate calculations. Based
on that, it autonomously triggers alarms and machine interlocks. It contains all
safety-critical code, implemented in VHDL. Triple Modular Redundancy and
Soft Error Mitigation are used for detecting random hardware faults [24].

The devices can be used in areas with very different radiation levels, e.g.
in service caverns close to the particle detectors as well as at the fences of the
CERN site. To that end they were kept very generic and parametrizable. Peri-
ods of uninterrupted operation can last several months or years. These system
attributes lead to high numbers of possible input values and deep internal states
that are challenging for verification.
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The calculation of the radiation dose consists of 3 additions with 64-bit
operands, 1 multiplication with 32-bit operands and logic for rounding. It is
calculated from the measured input current (fA - nA) and it is the base for
one of the system’s alarms. The dose is accumulated over a configurable period,
which can last several years. Internal registers track the state. The calculation
can be influenced at run-time by sending 6 parameters of up to 64 bit length
from the CERN control room to a CROME device. The dose alarm decision
is based on the outcome of 7 conditions, sampled on 2 real-time measurement
cycles that can be thousands of clock cycles apart.

The alarm and interlock matrix block implements a complex configurable
logical formula which drive the safety-critical outputs of the system. These out-
puts are connected to the alarm units, which provide visual and audible alarms
and to the machine interlocks, which stop the particle accelerators in case of a
too high radiation level. The formula can be configured by 200 2-bit wide param-
eters. In total the block has 2451 possible input values. Some of its outputs are
fed back to the logical formula as input. Apart from that the block does not
store an internal state and therefore results are available after a few clock cycles.

4.2 Verification Planning

We derived 76 verification requirements for the radiation dose calculation from
only 26 system-level requirements, which were written with a very high level
of abstraction and some ambiguities. The latter were discussed directly with
the requirements engineers for increasing independence. 8 statements that were
added and 10 statements that were only partially contained in the design specifi-
cation lead to further verification requirements. The analysis lead to 12 updates
of either requirements, specification or verification code. Verification planning
lead to a more complete documentation of the whole project, which is very
important to comply with safety standards [5]. We specified 52 cover properties
and 4 covergroups that contained 56 coverpoints, as well as 30 NLPs.

During the review of the NLPs we discovered one very critical misunder-
standing regarding the triggering of the radiation dose alarm. The design and
verification engineers interpreted a requirement in the same way, but differently
than the requirements engineers. This could not have been discovered with any
automated verification technique. It shows the importance of independence and
reviews. The detailed example has been reported in [16].

4.3 Automated Verification

Simulation and FPV were executed on a CentOS 7 workstation with 4 GHz CPU
and 32 GB RAM. The single-threaded Questa Sim simulator, version 10.7, was
used for simulation. Questa PropCheck, version 10.7c, was used for FPV with 8
hardware threads on 4 processor cores.
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Formal Property Verification

Radiation Ambient Equivalent Dose Calculation. The dose calculation was mod-
elled with auxiliary code. Properties compare the outputs of both models. So far,
the dose calculation could be proven with the following constraints:

– 101 different calculation period lengths from 0 to 100, where 0 stands for an
unlimited period

– Operands of additions restricted to 8 possible values or calculation period
restricted to 2 real-time measurement cycles

– Time counting register restricted to 13.6 years in 100 ms unity, which therefore
also limits the maximum period length to 13.6 years.

We allowed arbitrary values in the reset state by using a netlist constraint that
sets the initial values of input ports to X. That means proofs cover every possible
starting state, which includes the actual reset state.

A cutpoint was inserted at the register etxDN that normally loads the time
counting register etxDP with a new calculated value. That means that the formal
tool treats etxDN as an input and generates a proof for all possible values. If
cutpoints are enabled, the auxiliary code also uses etxDP. That ensures that the
formal tool uses the same value inside the DUV and the auxiliary model during
one round of calculation. etxDN cannot be used in the model, as its value can
be arbitrary in any clock cycles. The DUV and the model can perform their
calculations in different clock cycles. The properties proof that, after a defined
number of clock cycles following the start of one round, the outputs of both
models are equivalent.

This way the unlimited number of consecutive calculations that keep track
of an internal state is reduced to a smaller sequence of recurring operations. The
elapsed time tracking register needs to be verified in a separate proof.

Proven: 8 properties could be fully proven, without any constraints on param-
eter values. Most importantly they include the proof of correct triggering of
radiation dose alarms. The triggering is decided by 7 conditions at 2 consecutive
real-time cycles with configurable distance.

Undocumented Design Decision Found: One fault happened only with very
specific input bit combinations when an internal calculation result was negative
and rounded. Even though thousands of inputs had already been simulated, this
scenario had not been covered. To cover it, very tightly constrained simulation
test cases were needed. The rounding mechanism was not documented. The
coverage model had to be updated.

Fault that Happens After 7 years of Continuous Device Operation: In
the division of the elapsed time value, one of the operands was treated as a signed
value. The calculation was only wrong, when the most significant bit had value
‘1’. This fault could have never been found by black-box simulation because it
would have required to simulate 7 years of device operation to discover it. For
environmental radiation monitors it is a realistic scenario to operate continuously
for such a long time. FPV revealed the fault within 1 s.
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Alarm and Interlock Matrix. The logical formulas of the matrix were modelled
with auxiliary code. Properties were used to prove the equivalence of the calcu-
lated values with the DUV’s outpus.

Proven: The alarm and interlock matrix was fully proven with 46 properties.

Fault in Radiation Dose Alert: In one very specific input combination, the
radiation dose alert was not triggered due to a wrongly specified range of a
partially used VHDL vector. Many stimuli had already been simulated by the
designer and user tests with the programmed FPGA had passed. Only FPV
revealed the fault.

Output not in Safe State in Case of Invalid Inputs: The system require-
ments allowed 3 different values for certain inputs that were stored as 2 bits. The
4th possible value is illegal and not expected. No specific measures were imple-
mented to handle that case, so the outputs would have been in inconsistent states
and not in their safe state.

Constrained-Random Simulation

Table 2. Functional coverage of the radiation dose calculation

Cover type Covered - all
tests

Covered -
passed tests

Nr. of
coverpoints

Nr. of bins Nr. of
stimuli
applied

Cover properties 100.00% 100.00% – – 16355

cgIntConditions 100.00% 93.98% 28 466 324647

cgIntRegression 100.00% 100.00% 3 3 250

cgIntValueRanges 91.95% 73.02% 17 656 249327

cgIntRobustness 7.15% 6.02% 8 392 280977

Total 79.82% 74.60% 56 1517 454200

Radiation Ambient Equivalent Dose Calculation. Table 2 shows the number of
stimuli that were applied to reach ca. 80% of coverage with constrained-random
inputs. The goal was not to find the minimum number of stimuli necessary to
reach full coverage, but rather to simulate large numbers of stimuli in the prox-
imity of interesting scenarios and corner cases in order to increase the chances
of finding faults in operation conditions that have not even been considered.

A coverage bin can be a value, value range, value transition or a condition
outcome. An additional condition for coverage sampling can be specified. E.g.
sampling a value for radiation dose calculation period is only valid, when the
whole period has been simulated. It is not meaningful to sample it already when
it has been applied to the input. The period can span thousands of clock cycles or
in real-time: days, months or years. Some faults only appear after a long sequence
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of applied inputs and internal state changes, like e.g. the fault that would have
happened after 7 years of operation that we found with formal verification.

We did not reach 100% functional coverage for all covergroups. This shows
the shortcomings of simulation for continuously operating devices. The last two
groups contain values and expressions that are related to the radiation dose
calculation period. Since simulation is even slower than real time, it is impossible
to simulate these scenarios with purely design independent black-box techniques.
Code coverage confirmed that the only bits that were never toggled were the
higher-order bits of registers that store time values. Toggle coverage reached
only 78%. The rest was fully covered.

It is possible to access any internal signals from within the SystemVerilog
testbench. The internal state, e.g. the elapsed time register, could be manipulated
to simulate different real time values and reach full coverage. As discussed for
cutpoints, to keep independence high, this technique should only be applied after
independent black-box verification has reached its limits.

In a first attempt the simulation that created the coverage shown in Table 2
ran nearly 40 h. The cause for that long runtime were the cover properties. They
contained many sequences that spanned over a large number of clock cycles, using
SystemVerilog constructs like ##[1:$], which means that something happens
after 1 or an arbitrary number of clock cycles. As long as a property or sequence
is not yet covered, the simulator has to create a new instance of it at each clock
cycle and check in each following clock cycle whether it has been covered. This
construct is very useful to intersect different sequences at arbitrary times, but it
comes with the cost of runtime increase. A more efficient alternative turned out
to be covergroups that use expression coverage with value transition bins. The
covergroup sampling did not add any significant overhead.

We tracked the test cases that actually contributed to the coverage of the
cover properties. We ran each of them until its contribution to coverage of cover
properties stagnated. Once all properties were covered, we executed the rest
of the test suite with cover properties disabled. This approach led to a total
simulation runtime of 3 h.

Table 3. Verification findings - radiation dose calculation

Found by Update of

specification

Update of

implementation

Update of

verification code

Total found

by method

Review of requirements 4 5 6 9

Natural Language

Properties

1 1 1 1

Review of design

specification

1 2 0 2

Constrained-random

simulation

5 9 2 15

Formal Property

Verification

4 3 4 11

Total 15 20 13 38
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4.4 Results Summary

Table 3 shows the faults that we found in the radiation dose calculation. Some
findings caused updates of multiple artefacts. The total numbers per method
should not be compared, because faults that had already been found with one
verification technique had been removed and could have therefore not been found
anymore with the other techniques. The results show that each described method
contributes to the discovery of faults. Table 4 shows how long it would minimum
take to apply each input combination that has been covered by formal proofs
if we could simulate one stimulus at each CPU clock cycle. Many more simu-
lation cycles would have to be added to cover all different traces of continuous
operation, like e.g. different dose calculation periods. The fault that would have
happened after 7 years of operation clearly shows this need. The fault that was
not covered because it was hidden behind an undocumented design decision and
the fault in the radiation dose alert show that testing only a few values per
equivalent class is not always sufficient.

Table 4. Estimated minimum simulation time for the proven bits, compared to actual
formal verification run time.

Radiation dose
calculation

Alarm & interlock
matrix

Nr. input bits covered by proofs 70 451

Nr. proven properties 8 46

Estimated min. simulation time 9359 years 7.99 * 10137 years

Runtime formal verification for all proofs 1.46 h 33 s

Documentation, Traceability and Reproducibility. We use the version
control system Git to communicate design and verification artefact updates. It
can be easily forgotten to update a version number inside the DUV or verification
code. Git generates unique hashes for each commit. We used these hashes to track
the faulty and updated versions, log files, planning and results documentation.
Any state of the test bench can be checked out and results can be reproduced.

5 Conclusion and Future Work

We presented a functional verification methodology for highly parametrizable,
continuously operating, safety-critical real-time systems implemented in FPGAs.
The methodology can also be applied to digital Application Specific Integrated
Circuits (ASICs). We started with a discussion of our methodology in comparison
to the requirements of the IEC 61508 and related work. We defined a workflow
that starts with the system safety requirements as input and verification results
as output. Forward and backward traceability between these artefacts is pro-
vided via functional coverage items. We applied our technique of NLPs [16] to
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aid the requirements review. Our main verification method is Formal Property
Verification (FPV). This decision was supported by the discovery of several inter-
esting faults and successful proofs. Additionally we apply constrained-random
simulation with the UVM. For both methods we use functional and structural
coverage as a metric for progress tracking.

The methodology was demonstrated on a subset of the CERN RadiatiOn
Monitoring Electronics (CROME). We will further apply it to that system and
use it for future FPGA or ASIC projects. There is still potential for further
automation and usage of the UVM’s concepts for reusability from block to FPGA
system level. Fault injection will have to be added to address random hardware
faults. Then we intend to extend the methodology to include SoC system level
verification that also includes the software running on the ARM core. We are
also working on unifying the reference model for simulation with the auxiliary
code for formal verification to reduce effort.
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Abstract. Boolean-logic Driven Markov Processes (BDMPs) is a graph-
ical language for reliability analysis of dynamic repairable systems. Sim-
ulation and trace-based analysis tools for BDMPs exist and have been
used to analyze reliability, safety and security aspects of industrially rel-
evant case studies. To enable a model-based analysis of BDMPs, such
as probabilistic model checking, formal semantics is indispensable. This
paper presents a rigorous semantics to repairable BDMPs using Markov
automata (MA), a variant of continuous-time Markov chains (CTMCs)
with action transitions. The semantics is modular: an MA is associated
with each BDMP element and these are combined to obtain an automa-
ton for the entire BDMP. By ignoring the actions that are used to “glue”
the MA of BDMP elements, a CTMC is obtained that is amenable to
analysis by e.g., model checking. We report on a prototypical implemen-
tation and experimentally show that our semantics corresponds to the
BDMP interpretation by the tool Yet Another Monte Carlo Simulation.

Keywords: Reliability · Dependability · Formal methods ·
Probabilistic model checking · Monte-Carlo simulation · Compositional
analysis

1 Introduction

Static Fault Trees. Fault trees [18] are used for safety and reliability engineer-
ing in many application areas. Static Fault Trees (SFTs) are the simplest; their
leaves, called basic events (BEs), model individual component failures or human
errors. The failure times are governed by continuous probability distributions.
Internal nodes, called gates, model how component failures lead to system fail-
ures. Gates are like logic circuit elements such as AND and OR, both instances
of the voting (VOT) gate. Fault tree analysis amounts to determine the failure
probability of the root of the fault tree, called the top event. SFTs are simple;
the ordering of failures is irrelevant and repairs are excluded.
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Extensions. SFTs have been extended in numerous ways, e.g., with priority-
AND PAND gates [20], by dynamic fault trees (DFTs) [9] possibly extended
with repairs [6,11], state-event fault trees (SEFTs) [14], component fault trees
(CFTs) [15], Boolean logic Driven Markov Processes (BDMPs) [5] and a gener-
alisation thereof [17]. These extensions are driven by the need to model e.g., (a)
the replacement of failed components by spare ones, (b) hot and cold redundan-
cies, (c) complex failure orderings, (d) repairs and maintenance strategies, or (e)
the failure of a component by going through several degraded modes.

The Need for Semantics. The added expressive power leads to more modeling
flexibility but comes at a price: the interpretation of these graphical fault tree
languages becomes involved. (Also the analysis is more complex; e.g., maximal
cut set computations—the main technique for SFTs—no longer suffice.) The
interpretation of fault trees is not just of theoretical interest. Slightly different
interpretations may lead to significantly divergent reliability measures and give
rise to distinct underlying stochastic (decision) processes. This issue is discussed
in detail for DFTs in [13]. Moreover, a rigorous semantics is a prerequisite to
enable the analysis of fault trees using multiple tools. Our overall aim is to
analyze Bouissou’s BDMPs [5] by means of probabilistic model checking [1]. It
has been shown in the last years that such an approach is quite successful for
analyzing DFTs [11,19]. This paper, therefore, focuses on providing a rigorous
model-based semantics to BDMPs.

BDMPs in a Nutshell. BDMPs are used in the probabilistic safety assessment of
nuclear power plants. Two major mechanisms in BDMPs are triggers and trig-
gered Markov processes. The triggers model activation: if the source of a trigger
fails, then the target of the trigger is activated, i.e., woken from a stand-by mode,
provided at least one of its parents is activated. Triggered Markov processes are
pairs of Markov chains associated with BEs: one describes the behavior when
being activated while the other considers the case when de-activated. BE can
thus be in four states: working or failed in standby, or working or failed in the
activated mode. BDMPs facilitate repairs by transiting from a failed to a work-
ing state. BDMPs allow modeling state-dependent failures, an aspect that is not
supported by SFTs. BDMPs can be analyzed by the discrete-event simulator
Yams and the trace-based analysis tool FigSeq [4].

Contributions of This Paper. The main contribution is a formal semantics of
BMDPs. The semantics is operational: we map each BDMP onto a Markov
automaton [10]. This semantics assumes all continuous failure distributions to
be negative exponentials. It covers two versions of triggers and takes triggered
Markov processes as basic events. It thus includes repairs. This complicates mat-
ters a bit, as—in contrast to SFTs and classical (non-repairable) DFTs—the
property is lost that once a sub-tree has failed it remains to do so. Many exist-
ing semantics of extensions of SFTs do not contain repairs; a notable exception is
recent work on rare event simulation of DFTs with repairs [6]. Our semantics is
modular, following the compositional approach for DFTs in [3]. This entails that
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each BDMP construct, i.e., basic event, gate (such as VOT and priority AND),
triggers, etc. are mapped onto a single Markov automaton (MA). The MA for
the entire BMDP is obtained by composing the constituting MA together. In
order to enable this composition, the MAs for the BDMP elements are equipped
with extra signals (a.k.a. actions). Once the entire MA of a BDMP is obtained,
the actions are not of any further use and are abstracted away.

A prototypical implementation of the semantics has been made. It constructs
the MA in a modular way as defined in this paper using the tool moconv1 and
uses the probabilistic model checker Storm [8] for reliability and availability
analysis. Our semantics is validated by comparing the analysis results of our
prototype with the simulation results of the BDMP analysis tool Yams [4]. (In
the absence of any other formal semantics of BDMPs, this is the best we can
hope for.) We stress that the focus of this work has not been to define a memory-
efficient semantics—the peak memory consumption of a compositional approach
can be substantial [19]. The modular approach, however, is conceptually simple,
easily reveals the intricacies of some of the individual BMDP elements and can
easily be extended with new types of gates. We, therefore, believe that our
semantics increases the understanding of BDMPs and can provide the basis for
more efficient state-space generation techniques for BDMPs, e.g., our semantics is
amenable to partial-order reduction techniques for MA. The main contributions
of this paper are:

1. A compositional, operational semantics of repairable BDMPs.
2. A prototypical implementation of this semantics.
3. An experimental validation of the semantics by comparing analysis results.

Organization of the Paper. Section 2 discusses the formal model, Markov
Automata (MA). The components of BDMPs and their semantics are detailed
in Sect. 3. The proposed prototypical implementation along with experimental
results are discussed in Sect. 4. Section 5 concludes the paper and discusses some
future work.

2 Markov Automata

Markov automata are a mathematical model that support discrete probability
distributions, exponential delays, non-determinism among choices, and parallel
composition. MA subsume DTMCs, CTMCs, CTMDPs and PAs as detailed by
[12]. Here we outline the theory of MA necessary to understand the present
work. We use R for the set of real numbers, μ for a distribution over the set S
μ:S → [0, 1] such that

∑
s∈S μ(s) = 1, Dist(S) for the set of discrete probability

distributions over the set S, supp(Dist) for the support of distribution function
Dist, and ⊥ (�) for FALSE (TRUE). Syntactically, a Markov automaton M is
a tuple (S,Act,→, ���, s0) where S is a finite set of states, Act is a finite set of
actions, → ⊆ S ×Act×Dist(S) is a set of action transitions, ��� ⊆ S ×R>0 ×S

1 The Modest Toolset: http://www.modestchecker.net/.

http://www.modestchecker.net/
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is a set of Markovian transitions, and s0 ∈ S is an initial state. Semantically
speaking, if an action a can be performed from a state s such that (s, a, μ) ∈→
(we write s

a−→ μ), then the probability of moving to state s′ ∈ S from state

s is μ(s′). Moreover, in case of a Markovian transition s
λ��� s′, this transi-

tion can be performed within time t with a probability which is exponentially
distributed with rate λ, i.e., (1 − e−λ·t). The states of MA are called Marko-
vian (iff having only Markovian outgoing transitions), interactive (iff having
only probabilistic outgoing transitions), deadlock (iff having no outgoing transi-
tion), or hybrid (otherwise). The exit rate of a Markovian state s is computed

as E(s) =
∑

s′ ∈S R(s, s′), where R(s, s′) =
∑{λ|s λ��� s′} is the rate between

state s and s′. The probability of leaving s is 1−e−E(s)·t. If s has more than one
successor state, then there exists a race between such states after leaving state
s; the probability of s′ winning the race equals P (s, s′) = R(s,s′)

E(s) .
The parallel composition (denoted ‖) of two MA Mi = (Si, Acti,→i, ���i

, s0,i), where i ∈ {1, 2} w.r.t. A = Act1 ∩Act2 can be formally defined as the
MA M1 ‖ M2 = (S1 × S2, Act1 	 Act2,→, ���,(s0,1, s0,2)), where → and ��� are
defined as the smallest relations satisfying the following six rules (R1 through
R6):

s1
α−→1 μ1 α 
∈ A

(s1, s2)
α−→ μ1·{s2 �→1}

R1
s2

α−→2 μ2 α 
∈ A

(s1, s2)
α−→ {s1 �→1}·μ2

R2
s1

α−→1 μ1 s2
α−→2 μ2 α ∈ A

(s1, s2)
α−→ μ1 · μ2

R3

s1
λ���1 s

′
1 s1 
= s

′
1

(s1, s2)
λ��� (s

′
1, s2)

R4

s2
λ���2 s

′
2 s2 
= s

′
2

(s1, s2)
λ��� (s1, s

′
2)

R5
s1

λ1���1 s1 s2
λ2���2 s2

(s1, s2)
λ1+λ2��� (s1, s2)

R6

In natural language, rules R1 and R2 state that an MA can independently take
any action not in the common action set. Rule R3 states that both MA must
progress synchronously on the common action α. Rule R4 and R5 define that no
synchronization takes place on Markovian transitions. The last rule R6 defines
that the rates of self-loops are added in parallel states. The composition opera-
tor (‖) for MA is commutative and associative. Thus, the order of composition
among n MA does not matter. MA is called open if it can be composed with
another MA. Once all composition is done, the MA is called closed. This paper
takes a state-based view of Markov automata for model checking and actions
are only required for parallel composition. This implies that all actions in closed
MA are turned into invisible actions (τ) and maximal progress assumption can
be applied thereafter. The maximal progress property states that if Markovian
and action-based transitions are enabled simultaneously in a state, then the MA
will always follow the latter and the former can be removed from the MA.

We do not have input and output actions (as adopted by [3]) in our frame-
work. The composition is done over common alphabets as per rule R3 using
synchronization vectors of the form 〈a, a〉 �→ a (both MA must synchronize on
action a and this action will behave as a in resultant composed MA) as detailed
in [12]. This rule can be extended to an arbitrary number of MA and intuitively
speaking, all MA having a shared action must synchronize to perform this action.
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In order to enable model checking on Markov automata, we equip states with
atomic propositions and introduce variables in the MA. The variable expressions,
defined on top of these variables, represent visible aspects of the system and
can be considered as labeling functions returning atomic propositions of each
state. The action transitions can be equipped with guards (predicates over the
variables) and updates (variable assignments).

Fig. 1. MA example

Example 1. These con-
cepts are summarized in
Fig. 1 by parallel compo-
sition of two MA; (a)
and (b). Where (a) has
one transition guarded
by when(⊥), this guard
makes the transition impos-
sible (we use gray color to
highlight impossible transitions). This guard also makes the a1 labeled action
transition of MA (b) impossible which was supposed to synchronize with this
impossible transition of (a). We associate one atomic proposition L with state
p1 of (a) (double circle is used to distinguish this state from the other states). The
treatment of L through different stages of parallel composition can be followed.
As a convention, we drop the distribution part of the transition whenever there is
only one reachable state after an action, i.e., supp(Dist(S)) = 1. Consequently,
we have dropped the probabilistic part for both actions a0 and a2 in (a) ‖ (b),
see Fig. 1(c). Conversion to invisible labels (τ) is shown in Fig. 1(c) and closed
MA after removing all action-labeled transitions is shown in Fig. 1(d). The selec-
tion of Markovian transition rate λ was deliberate to highlight the application
of rules R4 and R5.

3 BDMPs and Their Semantics

Fig. 2. BDMP elements

BDMPs [5] syntactically extend SFTs by
one new element called trigger (Trig). The
syntax of this formalism is very flexible.
The triggers can have any type of node as
their source and target. There are three
syntactic restrictions: (1) trigger source
and origin cannot be the same, i.e., trig-
ger loops are not allowed; (2) Top cannot
be the target of a trigger; (3) two triggers
cannot target the same node. However,
the semantics of this language is quite
involved. For instance, there are four vari-
ants of triggers available in BDMPs. The
name “logic-driven” stems from the fact
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Fig. 3. MA of the BDMP gates

that predicates are used to switch between the BE modes, e.g., from standby to
active mode. The structure-function SF and activation-function AF are used
to control the failure and activation mechanisms in a BDMP. In the original
paper [5], a predicate (trimming) was used to do computational optimization
and to incorporate don’t-care propagation assumption. The don’t-care propaga-
tion assumption is based on the view that the components of an already failed
subsystem can not fail while the system is being repaired. This assumption dras-
tically reduces the state space explosion and is close to reality. For the sake of
understandability, in this paper, we only focus on the activation behavior of
BDMPs and do not consider this trimming and any other optimizations for
BDMPs [5].

Compositional Semantics. In our compositional approach, we use actions to
model the failure and mode switching mechanism of BDMPs. We introduce four
actions namely active (a), de-active (d), fail (f) and repaired (r) to inform
the rest of the system when a component is active, standby, failed or repaired,
respectively. These four actions are enough to model BDMP elements. We define
two MA for each BDMP element corresponding to activation and failure. We
have defined different templates for each BDMP element and depending upon
the position and the configuration of an element in a BDMP we invoke the
corresponding template. These templates correspond to the semantics of each
element. The approach is modular therefore it is easy to add more templates
if, for instance, other elements are considered in the future. An exhaustive list
of BDMP elements is presented in Fig. 2. We segregate these elements into four
categories; the first row of Fig. 2 defines gates, the second and third row define
leaves, the fourth row defines triggers, and the fifth row defines others. We discuss
the proposed semantics under each category:

Gates: BDMPs have four types of gates; AND, OR, VOTing and PAND as shown
in the first row of Fig. 2. The AND, OR and VOT are inherited from SFTs.
PAND is a dynamic gate, i.e., its behavior depends on the order of input failures.
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All gates shown in Fig. 2 have two inputs (A, B) and one output (Y ). We use
subscripts to denote actions of a particular BDMP element, e.g., the failure of
input A is denoted by fA. Any n input gate can be represented by a cascade
of n − 1 two-input gates (a.k.a: binary gates). Therefore it suffices to provide
semantics of binary AND, OR and PAND gates. The structure function of AND
is true when SF of both inputs A and B is true, i.e., SF (Y ) = SF (A) ∧ SF (B).

The failure of an AND is captured by the s3 → s4 transition in the MA of
Fig. 3(a). The gate is considered repaired if either one or both of its inputs get
repaired. Therefore, we have two repair action transitions (s5 → s1 and s6 → s2)
for single input repairs and two repair transitions (s7 → s0 and s8 → s0) for the
repair of both inputs. The states representing the failure of the gate output are
double circled. Note that the gate can only leave the double circled states by
means of rY -labeled transitions.

The structure function of OR is true when SF of any of its inputs is true,
i.e., SF (Y ) = SF (A) ∨ SF (B). This behavior is captured in the MA of Fig. 3(b)
by introducing two fail transitions (s1 → s5 and s2 → s6).

The PAND in BDMPs follows an exclusive-PAND semantics, i.e., simultane-
ous input failures do not cause output failure. The structure-function of PAND is
true only when fA occurs strictly before fB . The precise semantics are depicted
in Fig. 3(c) where intricacies of repair orders can be followed. It is remarked that
exclusive-PAND, in-general, cannot capture the behavior where both inputs are
INST (introduced in the next paragraphs) and both fail simultaneously.

Fig. 4. MA of EXP and STDBY

Strictly speaking, the failure behavior
of a gate does not depend on its activa-
tion status. Therefore we did not have any
activation transition in the MA of gates.
This is different for leaves as we discuss
next. Although the behavior of a gate is
independent of the activation, the gates
are involved in propagating the activation
behavior towards the leaves. Therefore we also define the activation MA for
gates. (In-fact activation MA templates, in general, only depend on the type of
trigger pointing to a node and the number of parents inheriting this nodes.)

Leaves: There are eight types of leaves in BDMPs as shown in the second
and third row of Fig. 2. The EXP represents component failures which follow
an exponential probability distribution with rate λ ∈ R>0. The EXP can fail
upon activation as depicted in Fig. 4(a). The repair rate for this BE is μ and
it is unaffected by the activation status of EXP. The STDBY is used to model
components which can fail in standby mode. Hence, two failure rates are relevant:
the standby failure rate λs and the active failure rate λa. If we remove the
standby failure behavior of a STDBY, then it behaves as EXP. This can also be
observed in Fig. 4(b), i.e., if we remove the Markovian transition (s0 ��� s7) and
the then unreachable state s7, the resulting automaton is identical to Fig. 4(a).
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Fig. 5. MA of MULTI

The MULTI element represents a batch of inde-
pendent and identical EXP components. MULTI with
parameters n and m can be modeled as n EXPs inher-
ited by a VOT gate where K = m and N = n. The
structure function of MULTI becomes true after N−K
of these identical units have failed. The semantics of
MULTI with K = 2 and N = 3 are presented in Fig. 5.
Notice that the automaton structure of Fig. 5 can be
easily extended to other values of K and N . Since the
functionality of a VOT is hidden in MULTI, the MA of
VOT is also hidden in MA of MULTI. If we remove all a and d labeled action-
transitions from the MA of MULTI, we get the MA of a VOT gate with three
EXPs having identical failure rates (λ) and repair rates (μ).

Fig. 6. MA of INST

BDMPs model on-demand failures using INST
BEs. The SF of this element (upon activation)
becomes one with probability γ or remains zero with
probability 1 − γ as depicted in state s1 of Fig. 6. The
failing mechanism of this BE is quite straightforward
but its repair mechanism is not obvious. INST is recep-
tive to activation and deactivation actions even when
it is failed. The INST will keep track of the activation
requests and if it has a valid activation request at the
time of repair, then INST will be checked again.

Fig. 7. MA of other BDMP leaves

The structure function of
PHASE becomes immediately
true upon an activation request
and once true it switches to
false upon the occurrence of
a Markovian transition gov-
erned by rate μ, see Fig. 7(a).
Notice that action names like
start-phase and end-phase are
not used because they are just
aliases of failure and repairing actions, respectively. The SF of G.Fail (F.Safe)
becomes true (false) at the start of BDMP analysis and remains true (false)
thereafter. This behavior is achieved by adding a when(⊥) guard in the repair
(fail) action transition of Fig. 7(b) (Fig. 7(c)). BDMPs achieve the G.Fail (F.Safe)
feature by associating a flag FailF_Frozen to BEs. Setting this flag to true forces
the BE to keep its failure state set by the user during modeling. The user can
set the failure state through another flag called FailF . BDMPs (like other fault
tree formalisms) analyze how BEs contribute towards the occurrence of an unde-
sired top-level event (called TOP in BDMPs). It can inherit only one child v and
follows failure fv and repair rv transitions of this child, see Fig. 7(d).
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Fig. 8. MA of Trig and two parents

BDMP Modularization: Before
presenting the activation semantics
we discuss modularization; an impor-
tant concept for our approach. A
module is a subset of BDMP ele-
ments disjoint (from activation point
of view) from other elements and hav-
ing the same activation behavior. The
modularization creates a partition of
BDMP elements. In order to mod-
ularize, we traverse the BDMP and
identify the nodes that are target
of triggers. We call these nodes the
module representatives. The module-
representative is the element which
interacts with other parts of the BDMP and decides the activation status of the
module it is representing. The activation/deactivation mechanism of all module-
members are tethered to activation and deactivation of module-representative. It
becomes apparent that BDMP can be segregated in modules and cardinality of
these modules can range from one (imagine module consist of single BE) to the
size of entire BDMP (when BDMP is a simple SFT).

Triggers: There are four types of triggers in BDMPs: trigger Trig, inverted
trigger InvTrig, equal separating trigger EqSTrig, and opposite separating trigger
OppSTrig. The Trig link connecting nodes u and v means that, AF (v) is true
when SF (u) is true and v is input of some gates g1, g2, . . . , gk and AF of at
least one of these k gates is true. The semantics of Trig for the case where v
is inherited by two gates (a.k.a.: nodes) are shown in Fig. 8, where we perform
activation action av after reception of two actions; failure of u (fu) and activation
of gate 1 or 2 (a1 or a2 respectively). Here, we only presented MA for the case
where Trig target v is input of two gates but the pattern in this automaton can be
extended by adding states and transitions capturing activation, deactivation of
more gates (if added). We double circle the states where v is active to distinguish
them from the other states.
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Fig. 9. MA of other triggers

The InvTrig provides complementary behavior
to Trig. Here AF (v) is false when either SF (u)
is true, or SF (u) is false and v is the input of
some gates g1, g2, . . . , gk and AF of all of these
gates is false. The automata-based view for tar-
get v of InvTrig inherited by one gate is shown
in Fig. 9(a). Notice that the deactivation action
is performed as soon as parent is deactivated or
trigger origin u in repaired. The OppSTrig isolates
the activation behavior of the target node v from
its parents. The semantics of this link is presented
in Fig. 9(b). Informally speaking, v is activated at
the start of BDMP analysis and it is deactivated
as soon as OppSTrig origin u performs a fail action.
The EqSTrig achieves complementary behavior of
the OppSTrig. The target v of EqSTrig is activated
upon failure of the trigger origin, i.e., u. The deac-
tivation of v is performed upon repair of u, see Fig. 9(c).

Fig. 10. MA of PHASE activation

The aforementioned acti-
vation semantics captures the
behavior of all BDMP ele-
ments except PHASE, which
is treated differently. In BDMPs,
a flag In_progress is associ-
ated to PHASE. If this flag
is set to true, then the acti-
vation action has to be performed at the start of the BDMP analysis. The
In_progress flag of only one phase element should be set to true so that we can
clearly identify the first phase of the phased-mission profile. This flag is effective
at the beginning of the BDMP analysis. Subsequent activation is conditioned to
the fact whether PHASE is the target of a trigger or not. If it is not the target
of a trigger, then PHASE can not be activated afterward, see Fig. 10(a).

On the other hand, if PHASE is the target of the trigger then it will get
activated on the failure of trigger origin u. This activation mechanism is similar
to EqSTrig MA of Fig. 9(c) and we only need to add an activation action at the
start provided In_progress flag is true, see Fig. 10(b). We remark that BDMPs
are multi-top trees and each top module is activated at the start of the analysis.
We assign a different number to each top module because the top element can
be the target of the trigger.
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Fig. 11. Composition example

Fig. 12. MA of AlwaysTure and AlwaysFalse

Others: This includes node
activation flags (AlwaysFalse,
AlwaysTrue), BeforeLink, and
LogicLink. The AlwaysTrue
(AlwaysFalse) flags can be
associated to any node of the
BDMP. If this flag is true,
then that node and associated
module will remain active (de-active) throughout the analysis of the BDMP as
indicated by the MA of Fig. 12(a) (Fig. 12(b)). The BeforeLink connecting two
INST type nodes u and v enforces an order in checking the Bernoulli distribution
associated to the INST. That is, v is checked only after checking u. The Before-
Link were proposed later in BDMPs as an optimization. They are mentioned here
for the sake of completeness and we did neither outline its precise semantics nor
discuss it further because we do not consider optimizations. The last element we
mention is the LogicLink. The semantics of LogicLink are quite subtle. When we
syntactically say node B is child of node A, we are semantically implying that
the actions of the MA corresponding to B and A are visible to each other.

Composition Example. Let us explain our compositional semantics on a BDMP
example. The example BDMP, depicted in Fig. 11(a), has two modules (0 and
1) as there is only one Trig. The BDMP consists of four elements; therefore we
need eight automata to construct the complete state-space of the BDMP. The
automata and their relevant compositions are:
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MAFbdmp
︸ ︷︷ ︸

Fig.(n)

= MAFt︸ ︷︷ ︸
Fig.(f)

‖ MAAt︸ ︷︷ ︸
Fig.(b)

‖ MAFg
︸ ︷︷ ︸
Fig.(m)

‖ MAAg
︸ ︷︷ ︸
Fig.(c)

‖ MAFe︸ ︷︷ ︸
Fig.(d)

‖ MAAe︸ ︷︷ ︸
Fig.(c)

‖ MAFi︸ ︷︷ ︸
Fig.(e)

‖ MAAi︸ ︷︷ ︸
Fig.(l)

The final MA (see Fig. 11(g)) of the BDMP is obtained by turning all actions
into internal actions and applying maximal progress (as described in Sect. 2).

The activation mechanism of t (TOP) is shown in Fig. 11(b) with an impos-
sible deactivation transition. Since all other components of the primary module
will follow that behavior, the deactivation transition of their MA is colored gray
to indicate this impossibility, see Fig. 11(c). The same approach is followed in
Fig. 11(d) to indicate that e cannot be deactivated once activated. All states
corresponding to the failure of TOP are double circled. Notice in Fig. 11(n)
that some states after the Markovian transition from z10 are still tagged as
fail states but no time is spent in these states because they all have only out-
going action transitions. Another important observation on some paths, e.g.,
z11 → z13 → z23 → z6 is that there is an interleaving behavior but since all inter-
leavings of action transitions lead to the same end result, we do not draw all
possible paths. A similar phenomenon occurs in Fig. 11(j). The transitions to
v2 and v8 are highlighted as impossible transitions because they are paralleled
by immediate (action-based) transitions a1 and d1, respectively. Each state is
annotated with the state identifiers from the composing automata for the sake
of clarity. State identifiers are neither required for composition nor for model
checking.

Non-determinism. Due to the compositional nature of semantics, non-
determinism can occur. That is to say, the closed MA of a BDMP may contain
states that have more than one outgoing action-transition. These scenarios occur
if there are several possible ways in which failures, activation, and de-activation
are propagated through the BDMP. As our semantics is modular, these propa-
gations are initiated locally, though their effect is global. Let us illustrate this
by an example, see the BDMP in Fig. 13(a).

Fig. 13. Non-determinism example

Our semantics obtains a choice
between the activation and
deactivation actions of INST
IA. This can be seen as fol-
lows. Consider the closed MA
in Fig. 13(b) of the BDMP
obtained after applying max-
imal progress. The transi-
tions are labeled with actions
(instead of the invisible action
τ) for the sake of clarity. Note
that transition s4 → s0 has three labels indicating that these transitions can be
arbitrarily permuted. Their order, however, does not matter and we will finally
reach state s0, regardless of which order is taken. Consider the execution trace of
the BDMP in Fig. 13(a), initiated by a repair of E: rE → rO1 → dO2 . This trace
does not activate IA. However, this propagation of E’s repair resulting in O2’s
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de-activation is not atomic. Therefore, the activation action of IA can interleave
with this trace. This is reflected by state s2 in the MA which also has an outgoing
aI -action transition. Another non-deterministic choice exists at state s3. This is
due to the two possible execution traces initiated by E’s repair: rE → aI → fI

and rE → aI → rO1 → fI . The first trace will directly lead to failure. But
the second trace repairs O1 (rO1) before performing fI ; failure state S7 will be
reached only after E’s next failure. In the meantime, I could be repaired leading
to a return to the initial state. This behavior is captured through the Markovian
transitions from state s6. These subtle non-deterministic scenarios are mainly
due to the instantaneous behavior of the INST element.

4 Prototypical Implementation and Experimentation

Fig. 14. Prototypical tool

Our compositional BDMP
semantics has been imple-
mented in a software proto-
type. The overall setup of our
implementation is presented
in Fig. 14. We describe each
block:

KB3.exe: The Knowledge
Base Workbench [4] is a GUI
based tool used to create, sim-
ulate, and export the BDMP as Figaro definition. Figaro is a domain-specific
object-oriented probabilistic modeling language defined to carry out operation
safety studies [4]. It generalizes various reliability models, e.g., reliability block
diagrams and can cast generic models in knowledge bases KB. In fact, BDMPs
are originally defined as a knowledge base in Figaro.

Python Script: This constitutes the core of our implementation. The script
takes a BDMP description as Figaro definition and generates a process-algebraic
description of its MA using the Modest language [2]. In order to do so, the
following five steps are performed;

1. ReadFI: we read the English or French version of BDMP and populate it into
a dictionary-based data structure.

2. ModularizeBDMP: the structure of the parsed BDMP is analyzed and seg-
regated into modules. We use a depth-first search on the underlying graph
to identify module-representatives. Whenever we encounter a node having
different activation behavior, i.e., the node is either target of Trig, InvTrig,
OppSTrig, EqSTrig, tagged as AlwaysTrue or AlwaysFalse, or inherited by more
than one module, then we consider this node as a module-representative. As
stated earlier, modules create a partition of a BDMP and from an activa-
tion point of view we only need to create interaction between partitions. We
remark that a module having TOP as module-representative is called primary
module and INST in primary modules of BDMPs as originally conceived in
[5] have no semantics, i.e., they are never tested.
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3. RemoveVOT: converts a VOT gate into a cascade of AND and OR gates.
4. BinarizeGates: This step turns any gate into a cascade of binary gates.
5. WriteModestDefinitions: This step generates a process-algebraic description

for each component present in the BDMP under consideration.

monovonv.exe: This component of the Modest tool-set converts a Modest file
to a JANI file. JANI is an intermediate language originally designed to exchange
models between different formal analysis tools [7]. The model checker Storm
has direct support for the JANI format.

Property: We use probabilistic temporal logic to encode the properties of inter-
est, i.e., the unreliability and the unavailability. In a repairable BDMP, there is
no “permanent failure”. What we are interested in is an entry in a tangible
fail-labeled state. Note that unreliability is a simple reachability property and
mostly a partial state-space suffices for this property. However, we need complete
state-space to compute the unavailability.

Storm: We feed the JANI file to Storm along with the property of interest
and Storm computes and returns the numerical value for the desired metric.
Storm [8] is a state-of-the-art probabilistic model checker. It is an open-source
and freely available tool. Recently, Storm participated in the QComp 20192
competition and outperformed all competitors on most of the benchmarks. It
uses numerical and symbolic methods.

YAMS.exe: Yams is a freely available Monte-Carlo based simulation tool for
BDMPs [4]. Yams uses a standard event-driven Monte-Carlo simulation method.
It can report the mean value of an indicator function along with its standard devi-
ation, i.e., the range of uncertainty against a given confidence level. Yams can
be configured to compute different reliability metrics, e.g., mean-time-to-failure
(MTTF), unreliability and unavailability, etc. The simulation time increases
with increasing precision requirement, e.g., approximately O(10k) simulations
are required to obtain a (low) probability of 10−k with a 10% confidence inter-
val.

Results of Test-Cases. The test cases considered along with detailed documen-
tation are available online3. These test cases range from simple interactions,
e.g., mutual exclusion to literature benchmarks. For each test case, we com-
pare Storm generated results with those of Yams. Yams reports results for
different confidence bounds and we benchmark, as tolerance, 99% confidence
level for our comparison. Storm was run for the precision of 10−8. Yams is a
Windows-based tool, whereas Storm was run on a Linux-based machine hav-
ing 5x: 2 Intel® Xeon® Platinum 8160, 48 threads 2.1 GHz, 384 GB RAM.
The symbolic engine of Storm, i.e., sylvan was restricted to 8 threads with
maximum allocated memory of 40GB. We build complete state-spaces symboli-
cally and MAs reported here are sparse models build from the symbolic models
2 HTTP://qcomp.org/competition/2019/.
3 HTTP://sourceforge.net/projects/visualFigaro/files/Doc_and_examples/Francais/.

http://qcomp.org/competition/2019/
http://sourceforge.net/projects/visualFigaro/files/Doc_and_examples/Francais/
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Table 1. Indicative statistics for test-cases

#elements Yams Storm Comparison
Test Mission Complete MA Reduced MA CTMC Absolute Error
case stat dyn Time Unrel. Tol. Unavl. Tol. #state #trans. #state #trans. #state #trans. ΔUnr ΔUnavl
1 10 2 10 0.7872 0.0011 0.5157 0.0013 987 1889 313 1299 172 984 0.0000 0.0002
4 19 2 10 0.9101 0.0074 0.6864 0.0120 34336 99002 20027 86719 3105 26436 0.0001 0.0005
17 24 4 10 0.8562 0.0009 0.5978 0.0126 1793667 4630531 511752 3593876 207744 2845056 0.0001 0.0018
23 23 3 20 0.8690 0.0275 0.4950 0.0407 16110 40220 5677 29787 2048 22528 0.0017 0.0096
39 34 6 10 0.7712 0.0034 0.5620 0.0040 144483 336048 50436 242001 12288 157120 0.0008 0.0003
49 13 3 10 0.8811 0.0026 0.6148 0.0040 934 2109 574 1739 117 548 0.0011 0.0010
53 14 5 10 0.6770 0.0038 0.4042 0.0040 101761 220941 36712 166196 10840 104420 0.0015 0.0017

after application of the maximal progress. We only look into the accuracy of
results and disregard computation requirements in terms of memory and verifi-
cation time because the implementation is only a sanity check of semantics. The
results for six test-cases are reproduced in Table 1. Detailed results along with
the python script can be accessed at4. The last two columns of Table 1 report the
absolute errors of the unreliability (ΔUnr) and unavailability (ΔUnavl). Where
ΔUnr = |UnrelYams − UnrelStorm| and ΔUnavl = |UnavlYams − UnavlStorm|.
We do not reproduce Storm calculated values as they can be easily reproduced
from the absolute errors. It is clearly visible (in the last two columns of Table 1)
that the unreliability and the unavailability values computed by Storm are
always within Yams-computed range. The size of the complete MA, the reduced
MA (after application of maximal progress), and CTMC (after removal of spu-
rious non-determinism) are also provided.

Non-determinism. As described earlier, the compositional semantics may lead
to non-determinism. This occurred in eight test cases. The non-determinism is
primarily due to the instantaneous character of INST elements. After delaying
the INST activation actions by a very high rate Markovian transition, i.e., 105,
and applying maximal progress, the minimal and maximal values obtained by
Storm coincide. That is, all remaining non-determinism is spurious. Our analy-
sis with Storm yields the same values as the simulation tool Yams. The usage of
high-rate Markovian transitions increases the stiffness of the underlying Markov
chain and it results in an increased analysis time as convergence is slower.

5 Conclusion

We presented a formal, compositional semantics for repairable BDMPs. Its mod-
ularity provides insight into the subtleties of BDMPs and yields a comprehen-
sible semantics that is amenable to model-based analysis such as probabilistic
model checking. Experimental evaluations using a prototypical implementation
reveal that our semantics coincides with the BDMP interpretation of the simula-
tion tool YAMS. Future work includes reducing the peak memory consumption
by leveraging partial-order reduction, bi-simulation, and symmetry reduction as
shown to be successful for dynamic fault trees [19]. The challenge is to adapt
these techniques to repairs. It would also be interesting to extend our semantics
4 HTTP://github.com/moves-rwth/dft-bdmp/.

http://github.com/moves-rwth/dft-bdmp/
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to generalized BDMPs [17], and to exploit priorities in GSPNs [16] to obtain a
fully deterministic compositional semantics as in [13] for DFTs.
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Abstract. The verification of safety requirements is fundamental in
many safety-critical domains. In order to reach the highest level of
required safety assurance, system engineers design components with a
variety of safety mechanisms. The resulting potential combination and
sequence of operational modes may become very complex and requires
automated analysis support.

In this paper, we propose new formal methods, based on minimal cut
sets, to generate explanations for operational mode transitions, in terms
of causes defined as combinations of basic events, namely faults and
recovery actions. The problem is quite subtle, as it requires to consider
events occurring before, and in between, the source and target opera-
tional modes, identifying those that are necessary to bring the system
into the source mode. We implemented the approach on top of the xSAP
safety analysis platform, and evaluated it on an industrial design, namely
an electronic control unit of a power steering system with redundancy
and multiple safety mechanisms.

1 Introduction

The increasing level of autonomy and complexity of networked systems and sys-
tem of systems in automotive as well as in other safety-critical domains augments
the required level of functional safety and reliability of Electronic Components
and Systems (ECS) [8]. In turn, the growing requirements in terms of func-
tional safety and reliability push the development of new design technologies to
analyze the safety of ECS. Fail-operational architectures include various safety
mechanisms such as redundancies and fault detection components inside a single
control unit. The interplay of multiple faults and mechanisms for fault masking
and fault recovery may become very complex and requires automated methods
and tools for its analysis.

In this paper we tackle the problem of analyzing the various faults, or in
general events, that may lead a system from an operational mode to another.
The system usually runs in nominal mode and switches to different backup or
degraded modes upon the occurrence of faults or recovery actions. Due to the
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presence of different components and overlay of various redundancies and mon-
itors, the system can switch to an operational mode for various reasons. We
propose a model-based approach to the analysis of these mode transitions build-
ing on symbolic model-based safety analysis techniques for minimal cut sets and
fault-tree generation [4].

The problem is quite subtle because the transition from mode m1 to mode m2

can be caused by events that occurred before m1 but due to some propagation
have effect with some delay or the effect is enabled by the new operational mode
m1. At the same time, we should not consider the events before m1 that caused
the system to go to m1. We propose a formulation that takes into account these
aspects and reduce the problem to parameter synthesis for temporal logic [6].

We implemented the approach on top of the xSAP tool [2] and evaluated
the results on the architecture of an automotive Electronic Control Unit. This
includes a dynamically redundant dual channel, each channel with a dual fail-
safe core, extended with a watchdog that may trigger the recovery of a passive
channel. The results are very useful to understand the interplay of events that
cause the mode transitions and show the scalability of the approach.

The rest of this paper is structured as follows. In Sect. 2 we discuss related
work. We describe the case study in Sect. 3. In Sect. 4 we discuss some back-
ground notions. In Sect. 5 we discuss our formal approach. The experimental
evaluation is presented in Sect. 6. Finally, we conclude and discuss future work
in Sect. 7.

2 Related Work

The problem addressed in this paper builds upon, and extends previous work on
Fault Tree Analysis (FTA), namely generation of minimal cut sets (MCSs) for
a given top level event (TLE). The semantics of MCSs is given in terms of fault
events occurring on a trace reaching the TLE [4,13]. The problem of computing
the cut sets can be reduced to reachability analysis and solved using Binary
Decision Diagrams as in [4], or using satisfiability (SAT)-based techniques for
parameter synthesis [6]. The region of cut sets can be minimized to obtain the
MCSs using classical routines for minimization of Boolean functions [7]. In [3]
the SAT-based approach is extended with several enhancements based on the
specific features of the problem, such as on-the-fly minimization and layered
computation of the MCSs for increasing cardinality.

In this work, the trace-based semantics for MCSs is extended to encom-
pass the case of generic (fault and recovery) events that explain the transitions
between different system modes, rather than a TLE. The problem is reduced to
parameter synthesis on a property expressed in LTL, and solved using techniques
that build upon those in [3].

A qualitative analysis of the EPS case study has been carried out in [1] using
FTA. The author performed the analysis by manually inspecting all possible
states and transitions, and demonstrated that the order of events causing the
mode transitions can be neglected. However, manual analysis is error-prone and
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Fig. 1. EPS case study: assembly view with the electronic control unit (ECU) circled
in red (left) and schematic overview (right). (Color figure online)

does not scale up when additional channels or states are considered. In this
paper, we give a formal definition of the problem and solve it using a formal
approach, based on model-checking.

In [10] a methodology is presented, based on Hip-Hops, to construct fault
trees structured in terms of a set of (critical and non-critical) modes orga-
nized into a mode chart. The methodology is focused on the investigation of
failure propagation, based on the annotation of system components with their
(dynamic) mode-based behavior. In our case, instead, we are interested in syn-
thesizing the mode-based (failure propagation) behavior automatically from a
given behavioral model of the system.

The concept of events triggering mode transitions is related with the notions
of causality as given, e.g., in the theory of counterfactual causality [9]. The latter
is defined using structural equations, but can be readily re-formulated for tran-
sition systems [5]. However, the notion of causality is more fine-grained, in that
it aims at distinguishing the notions of causality and temporal correlation, and
addresses concepts such as responsibility and blame. Moreover, we are interested
in sets of events that are necessary to explain a mode transition in all possible
scenarios, whereas classical causality focuses on identifying such causes in a given
scenario of interest. Finally, in our setting a cause may not be sufficient to trig-
ger a mode transition – an additional side condition, a contingency in causality
terminology, may be needed to make it sufficient.

3 Motivating Case Study

As case study, we selected an electronic power steering (EPS) system designed
for highly-automated driving vehicles, as shown in Fig. 1. The system is not
only able to support the driver in steering, but also to steer the vehicle without
any input from the driver, by receiving steering commands from a redundant
vehicle bus. Hence, the EPS system has high safety, reliability, and availability
requirements.
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3.1 ECU Design

In this case study, we focus only on the electronic control unit (ECU) of the
EPS system, circled in red in Fig. 1 (left). A schematic overview of the EPS
ECU is given in Fig. 1 (right). The ECU includes two separate channels, named
primary and secondary channel in the following. Each channel has its own and
independent power supply and connection to an individual vehicle bus. Both
channels can communicate with each other by redundant intra-ECU commu-
nication channels. Each channel contains a lock-stepped microcontroller with
an external watchdog and is able to drive 2 electric motors. The lock-stepped
microcontroller contains two cores that compute the same instructions in par-
allel. At each cycle, a comparator circuit inside the controller compares the
state of both cores. The microcontroller shows fail-silent behavior, so in case the
two core states are not equal no result is forwarded. In order to check whether
the comparator is working correctly, an external watchdog sends challenges to
the comparator and checks the correctness of the response. If the challenge is
answered incorrectly or if a timeout error occurs, the entire microcontroller is
reset.

3.2 System Modes

Each channel is either in mode master, slave, or passive. In master mode, the
channel calculates the torque for its two motors and sends a request to the other
channel in slave mode to set the same torque to its connected motors, so all four
motors provide the same torque. In slave mode, the channel awaits the torque
requests from the other channel and sets the torque as described before. If the
torque request is not received, the channel in slave mode has to assume that
the other channel has failed silently, hence it becomes master and calculates the
required torque itself. Since one channel and its directly connected two motors
are sufficient to steer the vehicle, the EPS system is still available even if one
channel fails.

3.3 Expected Faults and Their Effects

A channel has fail-silent behavior, therefore it enters the passive state only when
an internal error occurs and it is detected, e.g. by the lock-step comparator or
the watchdog. In passive state, the channel does not send any torque to its two
motors anymore. A fault in the power supply of a channel leads to it entering
the passive mode. When an erroneous or missing message is received from the
vehicle bus connected to a channel, the channel switches or stays in slave mode,
relying on the torque requests from the other channel in master mode. A fault
in the communication between the channels is critical, as the torque requests
cannot be exchanged anymore. For this reason, this intra-ECU inter-channel
communication is implemented by heterogeneously redundant links. A fault in
the microcontroller and its core, respectively, is very likely to be detected by the
comparator circuit. A fault in the comparator itself is critical, for this reason it
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is implemented in hardware directly. In order to ensure the correct functionality
of the comparator circuit, a watchdog, which is external to the microcontroller,
monitors it by a challenge-response protocol. In case the comparator does not
provide the correct response in time, the entire microcontroller is reset by the
watchdog. A fault in the watchdog itself is critical again, as it potentially resets
the microcontroller.

The individual faults have different occurrence probabilities, depending e.g.
on the complexity of the hardware or the employed level of redundancy. In
order to argue the safety of the entire EPS system and its ECU specifically, it
is indispensable to analyze the combination and probability of faults that lead
to unwanted behavior of the system. In general, the EPS system can exhibit
unwanted behavior whenever no channel is in master mode and one of them is
in slave mode. Given three modes per channel, overall nine modes exist in the
system. Not all nine system modes are equally critical, e.g. one channel being
in master mode and the other channel being in passive mode is acceptable for
a specific duration. On the contrary, both channels being in master mode and
potentially calculating opposite torque request is very critical and it potentially
leads to steering in the wrong direction and even hinders the driver to overrule
the system.

4 Background

In this section we present some background, in particular we introduce transi-
tions system, temporal logic, model checking, parameter synthesis, and minimal
cut sets.

4.1 Symbolic Transition Systems

The system under analysis is a reactive system, whose behavior is characterized
by a (possibly infinite) sequence of state changes triggered by events. In this
paper, we adopt a standard symbolic representation of the system, where the
system states are represented by a finite set V of variables and the state tran-
sitions by symbolic formulas that specify how the values of V change [12]. This
is usually obtained by using a copy v′ of each variable v ∈ V to represent the
next value of v after a transition. We denote by V ′ the set of next versions v′

of the variables in V . We also use a finite set E of event variables to label the
transitions and represent the events that triggered a state change. For simplicity,
we assume that the variables have all a Boolean domain, but this can be easily
lifted and the tool implementation of the approach considers also more complex
and infinite-domain variables.

Formally, a Transition System (TS) is a tuple S = 〈V,E, I, T 〉 where:

– V is a set of state variables;
– E is a set of event variables;
– I is a formula over V , representing the initial states;
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– T is a formula over V ∪ E ∪ V ′, representing the transitions.

A state of S is an assignment to the variables in V . Similarly, an event
is an assignment to the variables in E. A trace of S is an infinite sequence
σ = s0, e0, s1, e1, . . . of states and events such that s0 |= I and si, ei, si+1 |= T
for every i ≥ 0.

4.2 LTL Model Checking

We use Linear-time Temporal Logic (LTL) [14] with future and past operators
(see for example [11]) to represent sets of traces. Given a TS S = 〈V,E, I, T 〉,
the set of Linear Temporal Logic (LTL) formulas is inductively defined as

ϕ :: = p
∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ Yϕ

∣
∣ ϕSϕ

with p ∈ V ∪ E. Here X stands for next, U for until, Y for previous, and S for
since. Other logical constants and operators like �, ⊥, ∧, → and ↔ are used
as syntactic sugar with the standard meaning. The following abbreviations for
temporal operators are also used: Fϕ := �Uϕ, Gϕ := ¬F¬ϕ, Oϕ := �S ϕ,
Hϕ := ¬O¬ϕ, Zϕ := ¬Y¬ϕ.

Given a trace σ = s0, e0, s1, e1, . . . of S and i ≥ 0, we define the relation
σ, i |= ϕ as follows:

– if ϕ = p ∈ V , then σ, i |= ϕ iff si |= p
– if ϕ = p ∈ E, then σ, i |= ϕ iff ei |= p
– if ϕ = ¬φ, then σ, i |= ϕ iff σ, i |= φ
– if ϕ = φ ∨ ψ, then σ, i |= ϕ iff σ, i |= φ or σ, i |= ψ
– if ϕ = Xφ, then σ, i |= ϕ iff σ, i + 1 |= φ
– if ϕ = φUψ, then σ, i |= ϕ iff for some j ≥ i, σ, j |= ψ and for all i ≤ k < j,

σ, k |= φ.
– if ϕ = Yφ, then σ, i |= ϕ iff i > 0 and σ, i − 1 |= φ
– if ϕ = φSψ, then σ, i |= ϕ iff for some j, 0 ≤ j ≤ i, σ, j |= ψ and for all

j < k ≤ i, σ, k |= φ.

The (universal) model checking problem is the problem to check if σ, 0 |= ϕ
holds for every trace σ of S (denoted by S |=∀ ϕ or simply S |= ϕ). The existential
model checking problem is the dual problem of checking if σ, 0 |= ϕ holds for
some trace σ of S (denoted by S |=∃ ϕ). Note that S |=∃ φ iff S |= ¬φ.

4.3 Parameter Synthesis

In parametric systems, formulas can include also parameters, which are rigid
symbols whose value does not change along the execution of the system [6].
Let U be the set of parameters. A parameter valuation is an assignment to
the parameters. Given a propositional or an LTL formula φ and a parameter
valuation γ, we denote by γ(φ) the formula obtained from φ by replacing each
parameter in U with the assignment given by γ.
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A parametric transition system S is a tuple S = 〈U, V,E, I, T 〉 where U is the
set of parameters, V is the set of state variables, E is the set of event variables,
I(U, V ) is the initial formula, and T (U, V,E, V ′) is the transition formula. Each
parameter valuation γ induces a transition system Sγ = 〈V,E, γ(I), γ(T )〉.

In the scope of this paper, we are interested in the parameter synthesis for
LTL existential model checking, i.e., given an LTL formula ϕ over U ∪V ∪E, the
problem of finding all parameter valuations γ such that Sγ |=∃ γ(ϕ). We denote
by ρ(U, S, ϕ) the set of all such parameter evaluations. This set can be computed
effectively with a sequence of incremental model checking problems [6].

4.4 Minimal Cut Sets

Minimal Cut Sets (MCS) analysis produces all possible configurations of system
faults (called fault configurations) that cause the reachability of an unwanted
condition, called the Top Level Event (TLE). More formally, given a transition
system 〈V,E, I, T 〉 and a set of faults represented as event variables F ⊆ E, we
call fault configuration a subset FC ⊆ F .

A cut set represents a fault configuration that may cause the top event.
Formally, we generalize the definition in [4] as follows. Let S = 〈V,E, I, T 〉 be a
TS and let TLE be a propositional formula over V . We say that FC is a cut set
of TLE in S, written FC ∈ CS(S,TLE ,F), iff there exists a trace σ of S such
that:

1. σ, j |= TLE for some j ≥ 0;
2. FC ⊆ F and for all f ∈ FC there exists i, 0 ≤ i < j such that σ, i |= f .

Intuitively, a cut set corresponds to the set of faults that occur along a
trace reaching the TLE . Minimal cut sets (MCSs), written MCS (S,TLE ,F),
are those that are minimal in terms of faults: MCS (S,TLE ,F) = {cs ∈
CS (S, TLE,F) | ∀cs′ ∈ CS (S,TLE ,F) (cs′ ⊆ cs → cs′ = cs)}. When S and F
are clear from the context, we just use the notation CS (TLE ) and MCS (TLE ).

In practice, MCS are of interest since they represent the simpler (and more
probable) explanations for a given TLE. The monotonicity assumption (i.e, if cs
is a cut set, then any superset cs′ ⊇ cs is also a cut set) is commonly adopted,
since most systems are monotonic and for non-monotonic systems, the assump-
tion leads to a conservative (and accurate) over-approximation of the unrelia-
bility of the TLE. Non-monotonic analysis can be addressed by generalizing the
concept of MCS to the one of prime implicant [7].

4.5 Computing MCSs Using Parameter Synthesis

Given a transition system S = 〈V,E, I, T 〉 and a set of event variables F ⊆ E, the
region of cut sets can be computed via parameter synthesis [3]. Let us consider
a parameter pe for every event e ∈ F and the LTL formula ΨTLE := (

∧

e∈F (e →
pe))U TLE (see also similar approach in [13]). Then the set of cut sets is given
by ρ(U, S, ΨTLE ).



106 M. Bozzano et al.

The set of MCSs can be computed as the set of minimal such valuations,
i.e. the set of valuations γ ∈ ρ(U) such that for each γ′ ∈ ρ(U), γ′ ⊆ γ implies
γ′ = γ (where we define γ′ ⊆ γ iff γ′(u) implies γ(u) for each u ∈ U). This can
be computed with standard BDD-based operations.

5 Formal Problem and Solution

5.1 Formalization of Modes and Mode Transitions

An operational mode can be considered from the formal point of view as a macro
state, i.e. a set of concrete states. For example, in the EPS case study described
above, the master-slave mode, where the primary channel is in master mode and
the backup channel is in slave mode, includes various states where the power may
or may not be supplied to the channels, the data has been provided or not, the
cores are processing the data, the comparator state represents the consistency
of the cores’ output, etc.

On this line, a mode transition is achieved with a sequence of state transitions.
For example, in order to switch from master-slave to master-passive, the system
performs different state transitions, where for example a core of the backup
channel fails, the comparator silences the output torque, and the channel goes
to passive mode.

Formally, we define a mode of a system S = 〈V,E, I, T 〉 as a set of states
of S. A mode can be therefore represented by a propositional formula over the
state variables V . With abuse of notation, given a formula m over V , the mode
m refers to the set of states satisfying m.

Given two modes m1 and m2, a mode transition from m1 to m2 is a sequence
of s0, . . . , sn such that n > 0 and there exists a trace σ of S and i ≥ 0 such that

– for k, 0 ≤ k ≤ n, σi+k = sk (the sequence is part of the trace σ of S);
– for k, 0 ≤ k < n, sk |= m1 and sn |= m2 (the sequence leads from m1 to m2);
– i = 0 or σi−1 |= ¬m1 (the sequence is maximal as it is either the first mode

transition of σ or is preceded by another mode transition leading to m1).

5.2 Model Checking Mode Transitions

It is easy to prove that S has a mode transition from m1 to m2 (denoted by S |=∃
m1 ⇒ m2) iff S |=∃ F(m1 ∧Xm2). In fact, one can see that the definition is one-
to-one with the LTL formula F(Z¬m1 ∧m1 ∧X(m1Um2)). We proved also with
a model checker that this formula is equivalent to F(Z¬m1 ∧ m1U(m1 ∧Xm2))
and to F(m1 ∧ Xm2).

We can also generate with parameter synthesis the set of events that occur
in mode transitions between m1 and m2. Let us introduce a parameter pe for
every event e ∈ E and define the formula ψE as ψE :=

∧

e∈E e → pe. Then, we
build the LTL formula: F((Z¬m1) ∧ ((m1 ∧ ψE)U(m1 ∧ ψE ∧ Xm2))).
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Fig. 2. States and transitions for the system in Example 1.

5.3 Discussion

The analysis discussed in the previous section is quite related to the problem
of understanding which events cause a mode transition. A deeper look at the
problem shows that it is not what we need.

Example 1. Consider for example the transition system shown in Fig. 2 formal-
ized by 〈{b1, b2, b3}, {e1, e2, e3},¬b1 ∧¬b2 ∧¬b3, T1〉, where T1 is a disjunction of
conjuctions representing the set of transitions (for example, the transition from
state 000 to state 100 is represented by ¬b0∧¬b1∧¬b2∧e1∧¬e2∧¬e3∧b′

0∧¬b′
1∧

¬b′
2). In the figure, the states are labeled by the value of the variables b1, b2, b3.

Thus for example, the state 001 assigns b1 and b2 to false and b3 to true.
Suppose we are interested in the transitions from mode m1 = b1 ∧ ¬b3 and

m2 = b3, which correspond to the central and right dashed boxes respectively.
The mode transitions are two: 110, 111 and 100, 110, 111. The events that occur
in these transitions are e3 and e2, e3. Thus, it seems that the cause of the mode
transition is e3 (since it labels the only incoming transition into m2). However,
also e2 is necessary to reach m2, but not necessarily to reach m1: in some traces
e2 occurs before entering mode m1. Hence this interpretation is not captured by
the definition in Sect. 5.2.

5.4 Problem Definition

Intuitively, given a transition system 〈V,E, I, T 〉 and two modes m1 and m2, we
are interested in the sets of events in E that are necessary to go from m1 to m2.
We call such set of events Minimal Transition Cut Set (MTCS) for m1 ⇒ m2 and
we denote by MTCS(m1,m2) the set of all MTCSs for m1 ⇒ m2. For simplicity,
we assume that an event can occur only once. The framework can be extended
to consider multiple occurrences of the same event. Note that: 1) a MTCS for
m1 ⇒ m2 should not contain the events needed to reach m1; 2) the event in a
MTCS for m1 ⇒ m2 may occur even before m1.

We formalize the definition of Transition Cut Sets (TCSs) and MTCSs as
follows:
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Definition 1. F ∈ TCS(m1,m2) iff F ⊆ E and there exist a trace σ and i, j ∈ N

s.t.

1. i < j, σ(j) |= m2, and σ(k) |= m1 for all k, i ≤ k < j (i.e., it contains a
mode transition from m1 to m2);

2. there exists C ∈ MCS (m1) such that C ∩ F = ∅ and for each e ∈ C there
exists k, 0 ≤ k < i, such that σ(k) |= e (i.e., F does not contain a MCS
necessary to reach m1);

3. for each e ∈ E \ C, if there exists k, 0 ≤ k < j, such that σ(k) |= e, then
e ∈ F (i.e., F contains all other events occurring until m2).

The set MTCS(m1,m2) is the set of cut sets in TCS(m1,m2) that are min-
imal: MTCS(m1,m2) := {F ∈ TCS(m1,m2) | ∀F ′ ∈ TCS(m1,m2) (F ′ ⊆ F →
F ′ = F )}

5.5 Solution Based on Parameter Synthesis

In this section, we reduce the problem of finding MTCS(m1,m2) to a parameter
synthesis problem. We first compute MCS (m1). We introduce a parameter pe

for every event e ∈ E. Finally, we build the LTL formula:

Ψ(m1,m2) :=
∨

C∈MCS(m1)

F(m1 ∧ Y
∧

f∈C

Of ∧ X(m1U(m2 ∧ YH
∧

e�∈C

e → pe)))

Theorem 1. Given a TS S = 〈V,E, I, T 〉 and two modes m1 and m2,

TCS(m1,m2) = {F ⊆ E | S |=∃ γF (Ψ(m1,m2))}

where γF is an assignment to parameters defined as follows: γF (pe) = � iff
e ∈ F .

Proof. Given F ⊆ E, we prove that F ∈ TCS(m1,m2) iff S |=∃ γF (Ψ(m1,m2)).
Note that, for any trace σ of S, σ |= γF (Ψ(m1,m2)) iff there exists C ∈

MCS (m1) and σ |= F(m1∧Y
∧

f∈C Of ∧X(m1U(m2∧YH
∧

e�∈C e → γF (pe)))).
Thus, σ |= γF (Ψ(m1,m2)) iff there exists C ∈ MCS (m1), i ≥ 0 such that

σ, i |= m1 and σ, i |= Y
∧

f∈C Of , σ, i + 1 |= m1U(m2 ∧ YH
∧

e�∈C e → γF (pe)).
Thus, σ |= γF (Ψ(m1,m2)) iff there exists C ∈ MCS (m1), i, j ≥ 0 such that

1) i < j and σ, j |= m1 and for all k, i ≤ k < j, σ, i |= m1; 2) σ, i |= Y
∧

f∈C Of ,
3) σ, jYH

∧

e�∈C e → γF (pe)). These are the three conditions of Definition 1. In
fact, 3) holds iff σ, k |= e for some k, 0 ≤ k < j implies γF (pe)).

Once we obtain the set tcs of Transition Cut Sets, we can compute the
minimal ones (MTCS) as described in Sect. 4.5.
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6 Experimental Evaluation

6.1 Implementation

We have implemented the solution for computing MTCS described in Sect. 5.5
as a command in the xSAP tool [2]. A model in xSAP is written in the SMV lan-
guage; it can be manually specified or it can be the result of fault injection (the
functionality to automatically extend a nominal model with the fault specifica-
tion – see [2] for more details). Modes can be specified as Boolean expressions,
or implicitly as a set of discrete domain state variables (in the latter case, modes
correspond to all the possible evaluations of the given variables). The user can
either choose to compute MTCS for one pair of given modes m1 and m2 or for
all pairs of distinct modes taken from a given set of modes.

For each event to be considered in the analysis, a corresponding parameter
is created. For each mode m1, MCS (m1) is computed using parameter synthesis
and stored for the computation of MTCS(m1,m2), for all target modes m2. For
each pair of modes 〈m1,m2〉, the LTL formula Ψ(m1,m2) described in Sect. 5.5 is
constructed and used for the parameter synthesis. The output of the parameter
synthesis problem is a region, i.e. a Boolean formula over the set of parameters.
Each parameter is replaced by the corresponding event and the corresponding
minimal models are computed and printed. The command provides an option to
print all modes and transitions in dot format.

6.2 Application to the EPS Case Study

We modeled the EPS system informally described in Sect. 3 in SMV language1.
We separately defined the nominal model and the xSAP fault extension instruc-
tions. Then, using fault injection, we created the extended (faulty) model, on
which we ran the MTCS computation routine. We created two variants of the
EPS (nominal) models, a simple and a complex one. The simple model does not
contain internal components of the channels. The behavior of the model is also
simplified by ignoring the possibility of a channel reset. The complex model,
on the other hand, also models cores, a comparator, a watchdog and the reset
action of the channels. We first focus on the simple model to demonstrate the
functionality of our approach. Then, we analyze its scalability using the complex
model.

The simple model is composed of two channels pd and sd, the energy sup-
ply and vehicle bus for each channel pdEnergy, sdEnergy, pdBus, sdBus, and
a redundant communication com. The modules representing these components
interact as described in Sect. 3. In our analysis, we are interested in all events
that can cause the system mode to change, namely the fault events described in
Sect. 3 and the take-over of a channel in slave mode (i.e., when it fails to receive
a torque request from the other channel and assumes that the other channel has
failed). The list of all events for the simple model is shown in the middle column
of Table 1.
1 Available at https://es-static.fbk.eu/people/vvozarova/TransitionAnalysis/.

https://es-static.fbk.eu/people/vvozarova/TransitionAnalysis/
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Table 1. The events of the EPS system.

Simple model Complex model

Energy supply faults pdEnergy.fault pdEnergy.fault

sdEnergy.fault sdEnergy.fault

Vehicle bus faults pdBus.fault pdBus.fault

sdBus.fault sdBus.fault

Communication faults com.request_to_pd_fault com.can.request_to_pd_fault

com.request_to_sd_fault com.can.request_to_sd_fault

com.uart.request_to_pd_fault

com.uart.request_to_sd_fault

Channel faults pd.fault pd.core1.fault

sd.fault pd.core2.fault

pd.comparator.compare_fault

pd.comparator.forward_fault

sd.core1.fault

sd.core2.fault

sd.comparator.compare_fault

sd.comparator.forward_fault

Channel take-over recovery pd.takes_over pd.takes_over

sd.takes_over sd.takes_over

Channel reset recovery pd.reset

sd.reset

We carried out the MTCS analysis on all system modes of the simple model.
The modes, along with their criticality, are shown in Fig. 3. We ran the parameter
synthesis routine for all pairs of distinct modes and obtained a set of minimal
cut sets over the events. For illustration purposes, Fig. 4a shows a few selected
transitions between modes master-slave, slave-master, master-master and slave-
slave. The edge labels correspond to the sets of events found by our analysis
for the respective transitions. The graph shows that pdBus.fault is necessary to
reach slave-master mode. In case no other fault occurs, the sd channel takes
over in the following cycle. If the communication link to the sd channel fails at
the same time as pdBus, the system reaches slave-master mode in one cycle. If
the communication fails, the sd channel wrongly assumes that pd has failed and
goes to the critical master-master mode.
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Fig. 3. Possible combinations of channel modes. The green mode (solid border) is
a nominal functional mode. The orange modes (dashed) are modes with degraded
nominal function, but acceptable for a specific duration. The red modes (dotted) are
critical and can lead to erroneous behaviour. (Color figure online)

Fig. 4. Found MTCS (left) and occured events (right) in selected mode transitions.

Notice that if we used the formula presented in Sect. 5.2, that monitors only
events that occur in m1, different cut sets would be found. This is possible
because some faults take one cycle to propagate. For example, there is a sequence
of mode transitions containing transition from master-slave to slave-slave on
which no fault occurs. The sequence is visualized in Fig. 4. The effect of each
fault is visible in the next cycle. The communication fault causes sd to go to
master. The sd vehicle bus fault causes sd to go back to slave, analogously pd
vehicle bus fault causes pd to go to slave. As a result, only one minimal cut set
for master-slave to slave-slave transition is found, and that is an empty set.
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To test the scalability of our procedure, we created a more complex model
with more detailed communication and channel. Specifically, we modeled the
redundancy of the communication by introducing two submodules com.can and
com.uart with the same functionality as the original module. The communication
fails only if both submodules fail. The channel is extended by adding two core
modules core1 and core2, comparator and watchdog. The comparator ensures
that if a core fails, the channel goes to passive mode. However, if the comparator
is faulty, the channel can either wrongly stay in the nominal mode or go to passive
even when both cores are working correctly. If the watchdog recognizes that
either a core or the comparator is faulty, it resets the channel to its initial mode.
The list of all events is given in the last column of Table 1. The communication
faults are replaced by faults in com.can and com.uart, the channel faults are
replaced by core and comparator faults, and we additionally monitor the reset
event of the channel.

6.3 Scalability Results

We tested the implemented procedure for both simple and complex model. The
simple model contains 10 events and 7 nominal modules (more modules are
introduced after the fault extension). The complex model contains 20 events
and 17 nominal modules. We ran the experiments on a machine with Intel(R)
Core(TM) i5 CPU and 16GB RAM. The results are in Table 2. The results
show that the procedure is applicable for models with many events and complex
behaviour. Table 3 shows numbers of found minimal cut sets and their cardinality
for all mode transitions.

Table 2. Outcome of the MTCS analysis for both the simple and complex models. We
report used memory and time, and the number of generated MTCS for all transitions
between distinct modes (72 in total).

Simple model Complex model
Time (s) Mem (MB) MTCSs Time (s) Mem (MB) MTCSs

56.56 392.1 63 621.84 1047.0 354
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Table 3. Number of MTCS found for each transition from one mode (left) to another
(top) for the EPS system. Cells with dash ‘–’ are self loops on which the analysis
was skipped. Cells with ‘x’ are transitions with no cut sets found (the transition is not
feasible). The number of cut sets is followed by the cardinality of the sets in parentheses.

Simple model

MM MS MP SM SS SP PM PS PP

MM – 1 (1) 2 (1) 1 (2) 2 (2) 2 (2) 2 (1) 2 (2) 4 (2)

MS 1 (2) – 2 (1) 1 (3) 1 (1) 2 (2) 2 (3) 2 (1) 4 (2)

MP x x – x x 1 (1) x x 2 (1)

SM x x x – 1 (1) 2 (1) 2 (1) 2 (2) 4 (2)

SS x x x 1 (1) – 2 (1) 2 (2) 2 (1) 4 (2)

SP x x x x x – x x 2 (1)

PM x x x x x x – 1 (1) 2 (1)

PS x x x x x x 1 (1) – 2 (1)

PP x x x x x x x x –

Complex model

MM MS MP SM SS SP PM PS PP

MM – 1 (1),
1 (2),
2 (3)

4 (1) 1 (0) 1 (1),
1 (2),
2 (3)

4 (1) 1 (0) 1 (1),
1 (2),
2 (3)

4 (1)

MS 1 (3),
4 (4)

– 4 (1) 2 (4),
2 (5)

1 (1) 4 (2) 5 (4),
2 (5)

4 (1) 16 (2)

MP x 4 (2) – x 4 (3) 1 (1) x 16 (3) 4 (1)

SM 1 (2),
2 (3)

1 (3),
3 (4),
4 (5),
4 (6)

4 (3),
8 (4)

– 1 (1),
1 (2),
2 (3)

4 (1) 4 (1) 4 (2),
4 (3),
8 (4)

16 (2)

SS 1 (3),
2 (4)

1 (2),
2 (3)

4 (3),
8 (4)

1 (1) – 4 (1) 4 (2) 4 (1) 16 (2)

SP x 4 (4),
8 (5)

1 (2),
2 (3)

x 4 (2) – x 16 (3) 4 (1)

PM 4 (1) 4 (2),
4 (3),
8 (4)

16 (2) x x x – 1 (1),
1 (2),
2 (3)

4 (1)

PS 4 (3) 4 (2) 16 (3) x x x 1 (1) – 4 (1)

PP x 16 (4) 4 (2) x x x x 4 (2) –

7 Conclusions

In this paper, we extended model-based safety analysis techniques to consider the
transition between operational modes in complex systems. We propose new tech-
niques based on parameter synthesis and symbolic model checking. We evaluated
the approach in an industrial automotive case study describing the architecture
of an ECU implementing multiple safety mechanisms for functional safety.
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The directions for future development are manifold: 1. to investigate opti-
mization techniques to increase the scalability; 2. to extend the method to
consider the negation of events (when an event must not occur in the mode
transition, thus going beyond the monotonic case and MCS); 3. to extend the
method to consider multiple occurences of an event; 4. to extend the method
to consider more general notions of causality; 5. to investigate how ordering of
events influences mode transitions; 6. to embed the techniques in system and
safety engineering processes involving the design of fault detection and recovery
components and the specification of safety contracts on components.
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Abstract. Safety LTL properties are ubiquitous in the verification of
safety critical systems. There is already evidence that translating safety
properties into DFA rather than Büchi automata results in faster verifi-
cation times. Conventional translation strategies can in some cases use
unnecessarily large amounts of resources. We develop a symbolic adap-
tation of the L∗ active learning algorithm tailored to efficiently trans-
late safety LTL properties into symbolic DFA. We demonstrate how an
inductive inference procedure can be used to provide additional input
to the algorithm that greatly improves performance for certain impor-
tant families of properties. For completeness, we also provide an outline
and examples of how such a procedure can be implemented. Finally, we
compare with state of the art LTL translators and provide experimen-
tal evidence where our approach significantly outperforms conventional
translation strategies.

Keywords: Linear Temporal Logic · Safety properties · Automata
learning · Symbolic automata · Inductive inference

1 Introduction and Motivation

Safety properties are pervasive in model based design. Informally, they capture
the notion that ‘nothing bad should ever happen’, which, in turn, can be used to
express a great variety of requirements of safety critical systems. A widespread
formalism that can be used to describe safety properties is Safety LTL (Linear
Temporal Logic) [28]. Safety LTL specifications can be used in a variety of ways
in the model based design process: They can be used for formal verification of
the system, for runtime monitoring during testing, for generating test-cases and,
even before any system model is created, satisfiability tests can be performed on
them to reveal potential inconsistencies in the original requirements.
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An important step in the procedures mentioned above is translation of LTL
formulas into automata. In particular, it is possible to translate safety LTL for-
mulas to Deterministic Finite Automata (DFA), which is generally desirable, as it
has been shown to reduce verification times [26]. In an agile, continuous integra-
tion workflow where during prototyping every small change in the requirements
triggers a cascade of testing and verification actions that must be performed as
fast as possible to keep iteration times low, efficient translation of safety LTL
properties into DFA is of paramount importance.

The problems of translating LTL to automata and specifically safety LTL to
DFA have received a lot of attention over the years, and while the worst case the-
oretical complexity w.r.t number of states is exponential on the formula length
for non-deterministic automata and doubly exponential on the formula length
for deterministic automata, approaches that perform quite well in practice have
been developed [3,8,15,19,21]. Such approaches are generally based on syntac-
tic manipulation of the LTL formula and typically construct an automaton the
states of which correspond to subformulas of the original formula, which can sub-
sequently be determinized/minimized. One major drawback of these approaches
is that this intermediate automaton can be considerably larger than the final
result, which can lead to unnecessarily excessive resource consumption during
translation. Another limitation is that, to the best of our knowledge, existing
implementations of such approaches cannot take into account a priori knowledge
about the target automaton that might be available.

In this work, we present a novel approach for safety LTL to symbolic DFA
(SDFA) translation that overcomes both these limitations. Specifically:

– We develop a novel algorithm for syntactically safe LTL to SDFA translation.
– Our algorithm returns a minimal (w.r.t. number of states) SDFA and all

intermediately constructed SDFA contain strictly fewer states than the result.
– Our algorithm can be extended to take into account a priori information

about the target automaton, which results in significant performance boost.
– We provide an outline and examples of how an inductive inference procedure

that provides said a priori information can be implemented.
– We provide a prototype implementation and experimental evidence that the

proposed approach (i) behaves comparably with state of the art tools on
randomly generated formulas and literature benchmarks and (ii) significantly
outperforms the state of the art in certain important property families (even
without a priori information about the target automaton).

In Sect. 2 we summarize related work on (safety) LTL to DFA translation and
(symbolic) automata learning. In Sect. 3 we introduce the necessary preliminary
concepts and algorithms. In Sect. 4 we describe the proposed algorithm and its
properties. In Sect. 5 we present our experimental evaluation results. Finally, in
Sect. 6 we conclude with some ideas for future work.
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2 Related Work

The more general problem of translating LTL to Omega (e.g. Büchi, Rabin etc.)
automata has been studied extensively before [3,8,15,19]. The state of the art
here is Spot [3] and, more recently, Rabinizer [19]. The problem of translating
safety LTL to DFA has also received a great amount of attention [16,20,21].
This is justified by the fact that using deterministic automata can improve ver-
ification times [26]. To the best of our knowledge [21] is the state of the art on
translators specialized to turn safety LTL to DFA, hence we compare against
it in our experimental evaluation. Spot and Rabinizer are also able to generate
deterministic automata if requested, therefore we compare against them as well.

Automata learning and in general grammatical inference is a field that has
received a lot of attention over the years [12]. Algorithms here generally fall
into two categories, passive learning (learning from examples) and active learn-
ing (learning with queries). Symbolic automata learning is an area that recently
received some attention [13,22]. Variations of this problem have been studied
earlier as well [17]. Note that, while we do not claim to improve the state of the
art in symbolic automata learning, our extension of L∗ makes specific assump-
tions about the system to be learned, which enable a more efficient approach
than using a generic learning algorithm.

3 Preliminaries

3.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [24] is a widespread formalism used in model check-
ing based formal verification. The typical automata theoretic model checking
approach requires the negation of the LTL expressed property to first be trans-
formed into an automaton on infinite words, for example a Büchi automaton.
Then, this automaton is composed with an automaton representing the system,
and the resulting product is checked for emptiness.

LTL properties can be classified into two broad categories: safety properties
and liveness properties [4]. Informally, safety properties state that ‘something
bad never happens’, while liveness properties state that ‘something good even-
tually happens’.

Syntactic Safety Subset of LTL. Safety LTL properties can also be charac-
terized syntactically. Any property built out of operators in the syntactic safety
subset of LTL is guaranteed to be a safety property. Specifically, every propo-
sitional formula (i.e. a formula built of atomic propositions, ¬, ∧ and ∨) is a
syntactically safe formula, and if formulas f and g are syntactically safe, so are
formulas f ∧ g, f ∨ g, Gf , Xf , fWg, where G, X, and W are, respectively, the
globally, next and weak until LTL operators. We omit the formal definition of
the semantics of these operators and refer the reader to [28] which we follow in
this work. Note that it is possible to express any safety LTL property by only
using the syntactic safety subset of LTL.
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Bad Prefixes. Every safety LTL formula φ can be translated into a DFA which
accepts all bad prefixes of φ. A bad prefix of φ is a finite trace σ such that all
infinite continuations of σ violate φ. Kupferman and Vardi [20] further classify
safety LTL formulas as intentionally safe, accidentally safe and pathologically
safe based on the informativeness of their bad prefixes. Intuitively, accidentally
safe and pathologically safe formulas contain some redundancy; for example,
G(p ∨ X(q ∧ ¬q)) is accidentally safe, G(p ∨ F (q ∧ ¬q)) is pathologically safe,
and both are equivalent to Gp, which is intentionally safe. Since it is possible to
write any safety LTL formula as an intentionally safe formula, we will only con-
sider intentionally safe formulas here (however, note that our algorithm handles
accidentally safe formulas as well, but not pathologically safe ones, since these
do not belong in the syntactic safety subset of LTL).

3.2 Symbolic DFA and Symbolic Traces

In this work, we use the definition of symbolic automata from [11]. Symbolic
DFA are able to encode the state machine described by a DFA in a more succinct
way, by means of allowing predicates drawn from a boolean algebra to compactly
represent transitions between states.

Figure 1 shows two monitors for the safety property G(p → Xq) expressed
as both an SDFA and a DFA (� as a transition label stands for ‘true’). Notice
that while the number of states is the same in the two versions, the number
of transitions can generally differ drastically. This is very important for the
performance of the learning algorithm we employ, as reducing the number of
transitions also reduces the amount of book-keeping needed.

Fig. 1. Monitors for G(p → Xq)

Given a set of atomic propositions {p1, p2, . . . , pm} we define a finite sym-
bolic trace to be a finite sequence a1 · a2, · · · , an, where each ai is either � or
a conjunction of literals (a literal being an atomic proposition, pi, potentially
negated).

3.3 Active Automata Learning

Our approach is based on Angluin’s L∗ algorithm for active automata learning
[6]. In this setting, a learner tries to identify an automaton by submitting queries
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to a teacher. These can be membership queries, where the learner submits a
word and gets back an ‘accept’ or ‘reject’ answer, or equivalence queries, where
a hypothesis automaton is submitted and either the process ends with success
or a counterexample is generated which drives more queries.

There are four important data structures involved in a run of the L∗ algo-
rithm: A RED set of words that represent state candidates for the learned
automaton, a BLUE set of words that correspond to 1-step successors of
states in RED, a set of suffixes, SFX that are used to distinguish states in
RED ∪ BLUE and the observation table, OBS, which stores information about
words in RED and BLUE w.r.t. their behavior on the suffixes in SFX. The
set RED ∪ BLUE is prefix closed and the set SFX is suffix closed. The rows
of OBS are labeled by states in RED ∪ BLUE and its columns by elements
of SFX. The entry of OBS at row w ∈ RED ∪ BLUE and column s ∈ SFX
represents the result of the membership query for the word w · s, where dot
denotes concatenation. In other words, if the target automaton accepts the
word w · s, then OBS(w, s) is set to 1, otherwise it is set to 0. We say that
p, q ∈ RED ∪ BLUE are SFX-equivalent if ∀s ∈ SFX : OBS(p, s) = OBS(q, s).
Otherwise, we say that p and q are SFX-distinct. We say that OBS is (i) complete
if ∀w ∈ RED ∪ BLUE, s ∈ SFX : OBS(w, s) is set to either 1 or 0, (ii) closed
if ∀b ∈ BLUE ∃r ∈ RED : r, b are SFX-equivalent, and (iii) consistent when
∀p, q ∈ RED : if p, q are SFX-equivalent then their 1-step successors p · α, q · α
are also SFX-equivalent, for each letter α in the alphabet.

A brief description of the algorithm follows:

1. Initially, RED and SFX only contain the empty word, and BLUE contains
the 1-letter successors of the empty word.

2. Membership queries are used to make OBS complete, closed and consistent,
promoting states from BLUE to RED as needed (to enforce closedness),
updating BLUE to include the 1-step successors of any new RED states,
as well as potentially adding elements in SFX (to enforce consistency).

3. Once OBS is complete, closed and consistent, a hypothesis DFA is con-
structed.

4. An equivalence query is performed to check whether the hypothesis is correct.
5. (a) If the hypothesis is incorrect, we obtain a counterexample in the form of

a word on which the hypothesis and the target behave differently. We add
the counterexample and all its prefixes in RED and go to step 2.

(b) Otherwise, we have found the target automaton and we are done.

The L∗ algorithm is guaranteed to terminate and yield a minimal automaton
after at most n equivalence queries and a number of membership queries bounded
by a polynomial quadratic on n and linear on m, where n is the number of states
of the learned machine and m the maximum length of any counterexample word
returned by the teacher.

Several variants of the algorithm have been proposed over the years that
improve on the original algorithm and extend it to other formalisms. In our
implementation we use a variant where the counterexample and all of its suffixes
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are added in SFX instead of having RED updated as mentioned in step 5a
above, as done in [27]. We chose to do so because this introduces a new important
invariant: throughout the algorithm, all states in RED are pairwise SFX-distinct.
In turn, this makes constructing the hypothesis DFA easier: we can simply collect
all states in RED without worrying that one of them may be equivalent to
another. Another nice property of this variant is that OBS is guaranteed to be
consistent throughout the algorithm, which allows us to skip consistency checking
and enforcement in step 2 above.

4 Proposed Approach

Problem Definition and Approach Overview. The problem we are solving
can be formulated as follows: ‘Given a syntactically safe LTL formula Φ, con-
struct a minimal (w.r.t number of states) symbolic DFA that accepts all bad
prefixes of Φ and nothing else’. Note that the returned DFA must accept the
bad prefixes of Φ, i.e. all finite traces satisfying ¬Φ. The proposed algorithm is a
symbolic extension of Angluin’s L∗ tailored for LTL to SDFA translation. Mem-
bership queries are performed by recursive traversal of the LTL formula itself,
as explained in Sect. 4.2 that follows. As for equivalence queries, we employ a
symbolic model checker as explained in Sect. 4.3. Our method is symbolic in the
sense that we use a symbolic alphabet (set of predicates) for the learned DFA
and employ a lazy alphabet refinement strategy in which we begin with a single,
all-encompassing predicate, �, and gradually refine it as needed.

4.1 Safety LTL on Finite Symbolic Traces

In order to be able to perform membership queries, it is imperative that we define
a semantics for syntactically safe LTL on finite symbolic traces that will allow
us to identify bad prefixes. We introduce a four-value semantics where evaluat-
ing a formula on a symbolic trace can yield a value of True, False, Unknown
or Refine(proposition, index), the last one being parametrized by the proposi-
tion that needs refinement and the position in the symbolic trace this needs to
happen.

Let σ := a1 · a2 · · · an be a finite symbolic trace of length n and Φ a syntacti-
cally safe LTL formula. The function eval(Φ, σ, i), which returns the evaluation
of Φ on the suffix of σ that begins with ai is defined as follows:
eval(p, σ, i) :=

if ¬p is a conjunct in ai: return False eval(�, σ, i) := return True
if p is a conjunct in ai: return True eval(⊥, σ, i) := return False
return Refine(p, i)

eval(φ ∨ ψ, σ, i) :=
let eφ = eval(φ, σ, i), eψ = eval(ψ, σ, i)
if either eφ or eψ is True: return True
if eφ (resp. eψ) is False: return eψ (resp. eφ)
if eφ (resp. eψ) is Unknown: return eψ (resp. eφ)
# now , both eφ and eψ are refinement requests
if eφ.index > eψ.index: return eφ
return eψ
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eval(φ ∧ ψ, σ, i) :=
let eφ = eval(φ, σ, i), eψ = eval(ψ, σ, i)
if either eφ or eψ is False: return False
if eφ (resp. eψ) is True: return eψ (resp. eφ)
if eφ (resp. eψ) is Unknown: return eψ (resp. eφ)
# now , both eφ and eψ are refinement requests
if eφ.index > eψ.index: return eφ
return eψ

eval(¬φ, σ, i) :=
let eφ = eval(φ, σ, i) eval(Xφ, σ, i) :=
if eφ is True: return False if i ≥ n: return Unknown
if eφ is False: return True return eval(φ, σ, i + 1)
return eφ

eval(φWψ, σ, i) := eval(Gφ, σ, i) :=
return eval(ψ ∨ (φ ∧ X(φWψ)), σ, i) return eval(φ ∧ XGφ, σ, i)

where p is an atomic proposition and φ, ψ are syntactically safe LTL formulas.

4.2 Membership Queries and Lazy Alphabet Refinement

Given the semantics defined in 4.1, we are now able to explain how membership
queries work. Recall that when the L∗ algorithm submits a membership query it
receives an ‘accept’ or ‘reject’ answer. In our case, we want a membership query
mem q(Φ, σ) to return ‘accept’ iff the symbolic trace σ is a bad prefix for the
formula Φ. Therefore, if the result of eval(Φ, σ, 1) is False, mem q(Φ, σ) returns
1 (accept). If the result of eval(Φ, σ, 1) is True or Unknown, mem q(Φ, σ) returns
0 (reject). In the case eval(Φ, σ, 1) returns a refinement request, the symbolic
trace will be duplicated with one copy now containing the positive literal and
the other copy the negative literal of the proposition for which refinement was
requested, and two separate membership queries will be issued subsequently.

During a run of the L∗ algorithm, whenever a word is added to RED, its
successors with all letters of the alphabet are added to BLUE (this also happens
during initialization). This means that if we have a formula containing 10 atomic
propositions, every time a word is added to RED, 210 = 1024 words will be added
to BLUE. However, there is a high chance (depending on the formula, of course)
that many of these entries actually represent the same state, which implies that
a lot of time can potentially be wasted on membership queries that provide
essentially the same information. What we do to address this issue is add, instead,
a single entry to BLUE that symbolically represents all 1-step successors of the
state added to RED. For example, if the word added to red is p ·p∧ q, we add to
BLUE the word p · p∧ q ·�. Whether the latter actually corresponds to different
states will be revealed later, as membership queries are submitted. Suppose, for
example, that the algorithm issues the query mem q(G(p → Xq), p · p ∧ q · �)
or, equivalently, mem q(G(¬p ∨ Xq), p · p ∧ q · �). Since p holds at step 2, but
we do not know what happens to q at step 3, a refinement request for q at
position 3 is issued. Then, the word will be split accordingly and the following
two membership queries will be performed: mem q(G(¬p ∨ Xq), p · p ∧ q · q),
mem q(G(¬p ∨ Xq), p · p ∧ q · ¬q), the former of which returns Unknown and the
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latter False. And since we now know that p · p ∧ q · ¬q is a bad prefix for the
formula, the corresponding cell in OBS will be set to 1. Accordingly, the cell
corresponding to p · p ∧ q · q will be set to 0, which would also be the case for a
result of value True.

The astute reader may wonder here why we need both values True and
Unknown if the purpose of a membership query is to detect whether a word is a
bad prefix or not. The answer has to do with the behavior of True and Unknown
w.r.t. refinement requests: True and False have ‘priority’ over Refine, which
in turn has ‘priority’ over Unknown, as can be seen in the definitions of eval
for φ∨ψ and φ∧ψ above. This ensures that on one hand we perform refinement
when necessary, but on the other hand do not refine without a real need to do
so. For the same reason, we heuristically perform first the refinement request
that refers to the latest position in the trace.

4.3 Equivalence Queries

Equivalence queries are implemented by employing NuSMV [9], a symbolic model
checker. Whenever an equivalence query needs to be issued, a hypothesis automa-
ton is constructed, encoded in the language of NuSMV and then model checked
against the following properties:

LTLSPEC Φ ↔ G state �= accept LTLSPEC ¬Φ ↔ F G state = accept

where Φ is the LTL formula we want to translate, state is a variable holding
the current state of the encoded hypothesis automaton and accept is a value
denoting its (unique) accepting state. Note that in order to perform the above
checks, NuSMV does not internally translate the LTL formula into an automaton
(which would defeat the purpose of the proposed algorithm). Rather, it translates
the LTL formula into a CTL one with added fairness constraints and then applies
a symbolic model checking algorithm [10,14,25].

Counterexample handling is a bit involved, since what NuSMV returns is
a description of an infinite trace. What we do is we lazily enumerate all finite
prefixes of this infinite counterexample in order of increasing length and pick the
first one that reveals a problem in the hypothesis. We opted for choosing the
shortest possible counterexample because small counterexample length means
less subsequent membership queries, and while longer counterexamples might
reveal more new states, this is not guaranteed.

Another interesting direction to explore here would be, instead of model
checking against the formulas mentioned above, to simply obtain the symbolic
tableau NuSMV internally builds for Φ and compare this with the hypothesis
automaton to examine whether behavior appearing in the former is missing from
the latter and vice versa. It is not immediately obvious how this comparison
would be performed, as the two representations are quite different in nature;
nevertheless, this is something worth exploring, as it could potentially increase
the efficiency of equivalence queries.
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4.4 Properties and Complexity

Minimality. The proposed algorithm (i) returns a minimal (w.r.t. number of
states) SDFA and (ii) guarantees that all intermediate SDFA hypotheses contain
strictly fewer states than the returned result. Both (i) and (ii) follow directly from
the properties of the L∗ algorithm: The initial hypothesis contains a single state,
and the number of states of subsequent hypotheses is monotonically increasing
until it reaches the value corresponding to the minimal automaton.

Membership Query Complexity. Based on the definitions for eval in 4.1,
in order to compute eval on a node in the formula tree of the form φ∧ψ, φ∨ψ,
¬φ, Xφ, each of its children needs to be considered at most once. Similarly, in
order to compute eval on a node of the form Gφ or φWψ, each of its children
needs to be considered at most n times, where n is the trace length. It is easy
to see that with arbitrary nesting of operators in the safety subset of LTL, each
node in the tree of the formula will need to be examined at most nm+1 times,
where m is the total number of G and W operators in the formula. Therefore,
the complexity of a single membership query is polynomial on the trace length
and exponential on the formula length.

Equivalence Query Complexity. A bound for performing an equivalence
query can be given by a bound on translating the safety LTL formula into CTL
with fairness constraints and a bound on symbolic model checking of the hypoth-
esis automaton. As the hypothesis automaton can reach a number of states dou-
bly exponential on the length of the safety LTL formula, and the model checking
step is linear on the size of the automaton, the worst-case complexity of equiv-
alence queries is at least doubly exponential on the length of the formula to
be translated. This result motivated the search for a modified approach that
eliminates equivalence queries altogether, which we present in the following.

4.5 A Priori Information and Inductive Inference

The observation that equivalence queries are needed in order to discover states of
the target automaton raises an interesting question: What if we have some sort
of state information beforehand? This could be the actual states represented
as words or something else like distinguishing suffixes collectively allowing to
differentiate all states of the target automaton. The former would not be enough;
if we simply put these words in RED we would violate an important invariant of
the algorithm: Since SFX would only contain the empty word, potentially many
of the words in RED would be SFX-equivalent. Therefore, distinguishing suffixes
would need to also be put in SFX. As it turns out, the latter alone is enough,
since, as long as the required distinguishing suffixes are present, all states of the
target automaton will be discovered and put in RED in the process of filling the
observation table, updating BLUE and promoting states from BLUE to RED as
needed, without the need for any equivalence queries.
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In the rest of this section we discuss how we could obtain such information for
two counter property families (parametrized properties that express some sort of
counting by means of repetition/nesting of X operators) taken from aerospace
domain use-cases, shown in Table 1.

Table 1. Counter family formulas

N Counter family A Counter family B

1 G(¬p ∨ X(¬p ∨ ¬q ∨ r ∨ Xr)) G(¬p ∨ X(¬q ∨ r))

2 G(¬p ∨ X(¬p ∨ X(¬p ∨ ¬q ∨ r ∨ Xr))) G(¬p ∨ X(¬q ∨ (r ∧ Xr)))

3 G(¬p ∨ X(¬p ∨ X(¬p ∨ X(¬p ∨ ¬q ∨ r ∨ Xr)))) G(¬p ∨ X(¬q ∨ (r ∧ X(r ∧ Xr))))

Suppose that we need to translate a formula of one of the families above for
N = 50. What we could do is first translate formulas corresponding to small
values of N, which would be fast since the formula size is small, then obtain
the corresponding distinguishing suffixes (this can be easily done with breadth-
first search), and finally employ an inductive inference procedure to identify a
relation between N and the set of distinguishing suffixes, which, in turn, can be
used to derive the required information for N = 50. Providing such an inductive
inference procedure and formally analyzing its properties is outside the scope
of this paper. However, for completeness, we outline a simple approach, generic
enough to work on the property families listed above:

1. Identify base cases to be excluded from the following steps.
2. Identify how many suffixes are introduced from SDFA(N − 1) to SDFA(N)
3. For each newly introduced suffix in SDFA(N), identify a function to construct

it from suffixes in SDFA(N − 1).

We first show example runs of the procedure outlined above on the two prop-
erty families and then will explain how each individual step can be implemented
in a general way. The relation between N and sets of distinguishing suffixes is
shown in Table 2.

Table 2. Counter family formula suffixes

N Suffixes for counter family A Suffixes for counter family B

1 {a, ba} {a}
2 {a, ba, cba} {a, b, ca}
3 {a, ba, cba, ccba} {a, b, ca, da, cca}
4 {a, ba, cba, ccba, cccba} {a, b, ca, da, cca, dca, ccca}
5 {a, ba, cba, ccba, cccba, ccccba} {a, b, ca, da, cca, dca, ccca, dcca, cccca}
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where, for family A, we have a := ¬p ∧ q ∧ ¬r, b := p ∧ q ∧ ¬r and c := p ∧ q ∧ r.
We treat N = 1 as the base case, observe that when moving from N − 1 to N one
new suffix is added, and notice that this suffix can be constructed by prepending
c to the longest suffix from step N − 1. For family B, we have a := p ∧ q ∧ ¬r,
b := p ∧ ¬q ∧ ¬r, c := ¬p ∧ q ∧ r and d := ¬p ∧ ¬q ∧ r. In this case, we treat
N = 1 and N = 2 as base cases, and observe that two new suffixes are added
when moving from N − 1 to N, which can be generated by taking the longest
suffix from step N − 1 and (i) replacing the front letter with d for one, and (ii)
prepending the letter c for the other.

Generalizing the above approach, step 1 (identifying base cases) can be per-
formed by always treating N = 1 as a base case and then adding those cases
the suffixes of which contain less distinct letters than the following cases, while
steps 2 and 3 can easily be formulated as Syntax Guided Synthesis [5] problems
and solved as such.

5 Experimental Evaluation

We implemented a prototype version of the proposed algorithm (we refer to this
as ‘Proposed’ throughout this Section) in the programming language D [1] and
compared against scheck v1.2 [21], Spot v2.6.1 [3] and Rabinizer v4 [19]1 on (i)
500 randomly generated syntactically safe LTL formulas, (ii) 54 formulas from
the Spot benchmarks [2], as well as (iii) the 2 counter formula families from
Sect. 4.5 and their conjunction. The 500 random formulas were generated using
the Spot command line tools, and specifically the command:

randltl -n -1 4 --tree-size=10..30 -r | \
ltlfilt --lbt --syntactic-safety --size=10..25 -u -n 500

In short, the above means that we want 500 unique syntactic safety formulas
with up to 4 atomic propositions, of length between 10 and 25. The 54 Spot
benchmark formulas were taken from [2] and were the result of filtering the
184 formulas in that page for syntactic safety. The 2 counter formula families
come from industrial (United Technologies Research Centre) requirements for
aerospace domain digital hardware verification2. All experiments were run on an
Ubuntu 14.04 laptop with a 1.6 GHz Intel Celeron processor and 4 GB of RAM.
The results are summarized in Table 3 and Figs. 2 and 3 (memory consumption
generally closely follows running time in all cases).

As can be seen in Table 3, the proposed approach behaves comparably to
others on small formulas. We argue that there is potential for improvement here
by addressing some implementation details: In our prototype implementation,
communication with NuSMV involves a lot of process and file I/O, which can

1 To be fair to Rabinizer, since it is implemented in Java, we deducted 0.4 seconds
(the measured JVM startup time) from the elapsed time in all experiments with it.

2 Note that formulas of this kind with many (typically > 50) nested next operators,
expressing timing requirements for FPGAs, appear very frequently in this domain.
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Table 3. Execution times (in seconds) for 500 random and 54 Spot formulas

Algorithm 500 random formulas 54 Spot formulas

Average Median Average Median

Proposed 0.0693 0.0457 0.1262 0.0545

Spot 0.0397 0.0373 0.0406 0.0401

scheck 0.0082 0.0065 0.0161 0.0072

Rabinizer 1.4821 1.3668 1.8128 1.6885

cause considerable overhead (this is especially true for the latter, since hard disk
access is orders of magnitude slower than RAM access). In addition to that, the
current implementation of equivalence queries does not take advantage of the fact
that parts of past SDFA hypotheses exist in future ones – an incremental model
checking approach would be of great benefit here. This last issue, in particular, is
responsible for some spikes in running time that drive the average away from the
median in our case. Regarding the size of the corresponding minimal automata,
the average and median number of states are 5.4 and 5 in the random formulas
case, and 4.1 and 4 for the Spot formulas. Note that, in all cases, all tools except
Rabinizer return a minimal automaton.

Fig. 2. Results on counter formulas

Where our learning approach shines is in translating the longer counter for-
mulas (Fig. 2). It performs better asymptotically, as the number of next oper-
ators increases. Even if the automata grow linearly in size with the number of
X operators (N + 3 states for counter family A and 2N + 1 states for counter
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Fig. 3. Effect of suffix information on counter formulas

family B and their conjunction), scheck, Spot and Rabinizer require exponential
time in at least one of the property families and in their conjunction, while our
approach requires only linear time in all cases. This is a direct manifestation
of the main drawback of conventional translation approaches; we remind here
that our approach provides theoretical guarantees that this intermediate result
explosion does not happen. Also note that for counter family B as well as for
the conjunction of counter family formulas Rabinizer does not return minimal
automata (it returns automata that grow exponentially in size with N).

Taking into account a priori information about the target automaton gives a
significant additional boost to the proposed approach, as shown in Fig. 3. Note
that, while not very clear in the figures, the proposed approach using suffix infor-
mation performs better than all other tools on both counter formulas (and their
conjunction) for all values of N. These graphs also provide an idea of the over-
head introduced by the current implementation of equivalence queries due to the
non-incremental model checking approach in NuSMV as well as communication
delays (process and file I/O).

6 Conclusion and Future Work

In this work we presented a learning-based approach for translating safety LTL to
DFA. We studied its theoretical properties and demonstrated its performance in
practice. The proposed approach is comparable with existing ones in formulas of
small size. Moreover, by guaranteeing that intermediate results do not explode in
size, it outperforms existing approaches in long instances of important property
families, by orders of magnitude. In addition, unlike existing approaches, it can
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take into account a priori information about the target automaton, which leads
to even better performance.

We believe that the proposed approach nicely complements existing LTL
translators in the sense that, performance-wise, a hybrid approach where (i)
existing translators are used for small formulas and for inductive inference of the
suffix information, and (ii) the proposed approach with the previously derived
suffix information is used for longer formulas, would behave best.

In the future, we plan to improve our learning-based approach by employing
more L∗ optimizations (e.g. parallel membership queries, TTT algorithm [18]),
and by using an incremental model checking approach for equivalence queries.
We also plan to extend this work to translate general (not just safety) LTL
properties to Büchi automata as well [7,23].
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Abstract. Distributed protocols should be robust to both benign mal-
function (e.g. packet loss or delay) and attacks (e.g. message replay).
In this paper we take a formal approach to the automated synthesis
of attackers, i.e. adversarial processes that can cause the protocol to
malfunction. Specifically, given a formal threat model capturing the dis-
tributed protocol model and network topology, as well as the placement,
goals, and interface of potential attackers, we automatically synthesize an
attacker. We formalize four attacker synthesis problems - across attackers
that always succeed versus those that sometimes fail, and attackers that
may attack forever versus those that may not - and we propose algorith-
mic solutions to two of them. We report on a prototype implementation
called Korg and its application to TCP as a case-study. Our experi-
ments show that Korg can automatically generate well-known attacks
for TCP within seconds or minutes.

Keywords: Synthesis · Security · Distributed protocols

1 Introduction

Distributed protocols represent the fundamental communication backbone for
all services over the Internet. Ensuring the correctness and security of these
protocols is critical for the services built on top of them [9]. Prior literature
proposed different approaches to correctness assurance, e.g. testing [12,26], or
structural reasoning [11]. Many such approaches rely on manual analysis or are
ad-hoc in nature.

In this paper, we take a systematic approach to the problem of security of
distributed protocols, by using formal methods and synthesis [10]. Our focus is
the automated generation of attacks. But what exactly is an attack? The notion
of an attack is often implicit in the formal verification of security properties: it is
a counterexample violating some security specification. We build on this idea. We
provide a formal definition of threat models capturing the distributed protocol
model and network topology, as well as the placement, goals, and capabilities
of potential attackers. Intuitively, an attacker is a process that, when composed
with the system, results a protocol property violation.
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 133–149, 2020.
https://doi.org/10.1007/978-3-030-54549-9_9
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By formally defining attackers as processes, our approach has several benefits:
first, we can ensure that these processes are executable, meaning attackers are
programs that reproduce attacks. This is in contrast to other approaches that
generate a trace exemplifying an attack, but not a program producing the attack,
e.g. [5,39]. Second, an explicit formal attacker definition allows us to distinguish
different types of attackers, depending on: what exactly does it mean to violate
a property (in some cases? in all cases?); how the attacker can behave, etc.
We distinguish between ∃-attackers (that sometimes succeed in violating the
security property) and ∀-attackers (that always succeed); and between attackers
with recovery (that eventually revert to normal system behavior) and attackers
without (that may attack forever). We make four primary contributions.

– We propose a novel formalization of threat models and attackers, where
the threat models algebraically capture not only the attackers but also the
attacker goals, the environmental and victim processes, and the network
topology.

– We formalize four attacker synthesis problems – ∃ASP, R-∃ASP, ∀ASP,
R-∀ASP – one for each of the four combinations of types of attackers.

– We propose solutions for ∃ASP and R-∃ASP via reduction to model-checking.
The key idea of our approach is to replace the vulnerable processes - the
victim(s) - by appropriate “gadgets”, then ask a model-checker whether the
resulting system violates a certain property.

– We implement our solutions in a prototype open-source tool called Korg,
and apply Korg to TCP connection establishment and tear-down routines.
Our experiments show Korg is able to automatically synthesize realistic,
well-known attacks against TCP within seconds or minutes.

The rest of the paper is organized as follows. We present background material
in Sect. 2. We define attacker synthesis problems in Sect. 3 and present solutions
in Sect. 4. We describe the TCP case study in Sect. 5, present related work in
Sect. 6, and conclude in Sect. 7.

2 Formal Model Preliminaries

We model distributed protocols as interacting processes, in the spirit of [1].
We next define formally these processes and their composition. We use 2X to
denote the power-set of X, and ω-exponentiation to denote infinite repetition,
e.g., aω = aaa · · · .

2.1 Processes

Definition 1 (Process). A process is a tuple P = 〈AP, I, O, S, s0, T, L〉 with
set of atomic propositions AP, set of inputs I, set of outputs O, set of states S,
initial state s0 ∈ S, transition relation T ⊆ S × (I ∪O)×S, and (total) labeling
function L : S → 2AP, such that: AP, I, O, and S are finite; and I ∩ O = ∅.
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Let P = 〈AP, I, O, S, s0, T, L〉 be a process. For each state s ∈ S, L(s) is
a subset of AP containing the atomic propositions that are true at state s.
Consider a transition (s, x, s′) starting at state s and ending at state s′ with
label x. If the label x is an input, then the transition is called an input transition
and denoted s

x?−→ s′. Otherwise, x is an output, and the transition is called an
output transition and denoted s

x!−→ s′. A transition (s, x, s′) is called outgoing
from state s and incoming to state s′.

A state s ∈ S is called a deadlock iff it has no outgoing transitions. The
state s is called input-enabled iff, for all inputs x ∈ I, there exists some state
s′ ∈ S such that there exists a transition (s, x, s′) ∈ T . We call s an input state
(or output sate) if all its outgoing transitions are input transitions (or output
transitions, respectively).

A process P is deterministic iff all of the following hold: (i) its transition
relation T can be expressed as a function S × (I ∪ O) → S; (ii) every non-
deadlock state in S is either an input state or an output state, but not both; (iii)
input states are input-enabled; and (iv) each output state has only one outgoing
transition. Determinism guarantees that: each state is a deadlock, an input state,
or an output state; when a process outputs, its output is uniquely determined
by its state; and when a process inputs, the input and state uniquely determine
where the process transitions.

A run of a process P is an infinite sequence r =
(
(si, xi, si+1)

)∞
i=0

⊆ Tω of
consecutive transitions. We use runs(P ) to denote all the runs of P . A run over
states s0, s1, ... induces a sequence of labels L(s0), L(s1), ... called a computation.

2.2 Composition

The composition of two processes P1 and P2 is another process denoted P1 ‖ P2,
capturing both the individual behaviors of P1 and P2 as well as their interactions
with one another. We define the asynchronous parallel composition operator ‖
with rendezvous communication as in [1].

Definition 2 (Process Composition). Let Pi = 〈APi, Ii, Oi, Si, s
i
0, Ti, Li〉 be

processes, for i = 1, 2. For the composition of P1 and P2 (denoted P1 ‖ P2) to
be well-defined, the processes must have no common outputs, and no common
atomic propositions. Then P1 ‖ P2 is defined below:

P1 ‖ P2 = 〈AP1 ∪AP2, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, S1 × S2, (s10, s
2
0), T, L〉 (1)

where the transition relation T is precisely the set of transitions (s1, s2)
x−→

(s′
1, s

′
2) such that, for i = 1, 2, if the label x ∈ Ii ∪ Oi is a label of Pi, then

si
x−→ s′

i ∈ Ti, else si = s′
i. L : S1 × S2 → 2AP1∪AP2 is the function defined as

L(s1, s2) = L1(s1) ∪ L2(s2).

The labeling function L is total as L1 and L2 are total. Since we required the
processes P1, P2 to have disjoint sets of atomic propositions, L does not change
the logic of the two processes under composition. Note that the composition of
two processes is a process. Additionally, ‖ is commutative and associative [1].
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2.3 LTL

LTL [28] is a linear temporal logic for reasoning about computations. In this
work, we use LTL to formulate properties of processes. The syntax of LTL is
defined by the following grammar: φ ::= p | q | ... | φ1 ∧ φ2 | ¬φ1 | Xφ1 | φ1Uφ2,
where the p | q | ... are any atomic propositions ∈ AP, and φ1, φ2 can be any
LTL formulae.

Let σ be a computation. If σ satisfies an LTL formula φ we write σ |= φ. If
¬(σ |= φ), then we write σ �|= φ. The satisfaction relation for LTL is formally
defined as follows: σ |= p if p is true in σ(0); σ |= Xp if p is true in σ(1); σ |= Fp if
there exists some K ≥ 0 such that p is true in σ(K); σ |= Gp if for all K ≥ 0, p is
true in σ(K); σ |= pUq if there exists some K ≥ 0 such that for all k1 < K ≤ k2,
p is true in σ(k1) and q is true in σ(q2); and σ |= φ1 ∧ φ2 if σ |= φ1 and σ |= φ2.

An LTL formula φ is called a safety property iff it can be violated by a finite
prefix of a computation, or a liveness property iff it can only be violated by an
infinite computation [2]. For a process P and LTL formula φ, we write P |= φ
iff, for every computation σ of P , σ |= φ. For convenience, we naturally elevate
our notation for satisfaction on computations to satisfaction on runs.

3 Attacker Synthesis Problems

We want to synthesize attackers automatically. Intuitively, an attacker is a pro-
cess that, when composed with the system, violates some property. There are
different types of attackers, depending on what it means to violate a property
(in some cases? in all cases?), as well as on the system topology (threat model).
Next, we define the threat model and attacker concepts formally, followed by the
problems considered in this paper.

3.1 Threat Models

A threat model or attacker model prosaically captures the goals and capabilities
of an attacker with respect to some victim and environment. Our threat model
captures: how many attacker components there are; how they communicate with
each other and with the rest of the system; and the attacker goals.

Definition 3 (Input-Output Interface). An input-output interface is a
tuple (I,O) such that I ∩ O = ∅ and I ∪ O �= ∅. The class of an input-output
interface (I,O), denoted C(I,O), is the set of processes with inputs I and outputs
O. Likewise, C(P ) denotes the input-output interface the process P belongs to
(e.g. Fig. 2).

Definition 4 (Threat Model). A threat model is a tuple (P, (Qi)m
i=0, φ) where

P,Q0, ..., Qm are processes, each process Qi has no atomic propositions (i.e.,
its set of atomic propositions is empty), and φ is an LTL formula such that
P ‖ Q0 ‖ ... ‖ Qm |= φ. We also require that the system P ‖ Q0 ‖ ... ‖ Qm

satisfies the formula φ in a non-trivial manner, that is, that P ‖ Q0 ‖ ... ‖ Qm

has at least one infinite run.
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In a threat model, the process P is called the target process, and the processes
Qi are called vulnerable processes. The goal of the adversary is to modify the
vulnerable processes Qi so that composition with the target process violates
φ. (We assume that prior to the attack, the protocol behaves correctly, i.e., it
satisfies φ.) See Fig. 1.

Fig. 1. Example Threat Models. The properties φi are not shown. Solid and dashed
boxes are processes; we only assume the adversary can exploit the processes in the
dashed boxes. TM1 describes a distributed on-path attacker scenario, TM2 describes
an off-path attacker, TM3 is a classical man-in-the-middle scenario, and TM4 describes
a one-directional man-in-the middle, or, depending on the problem formulation, an
eavesdropper. TM5 is a threat model with a distributed victim where the attacker
cannot affect or read messages from Simon to Juan. Note that a directed edge in a
network topology from Node 1 to Node 2 is logically equivalent to the statement that
a portion of the outputs of Node 1 are also inputs to Node 2. In cases where the same
packet might be sent to multiple recipients, the sender and recipient can be encoded in
a message subscript. Therefore, the entire network topology is implicit in the interfaces
of the processes in the threat model according to the composition definition.

3.2 Attackers

Definition 5 (Attacker). Let TM = (P, (Qi)m
i=0, φ) be a threat model. Then

A = (Ai)m
i=0 is called a TM-attacker if P ‖ A0 ‖ ... ‖ Am �|= φ, and, for all

0 ≤ i ≤ m: Ai is a deterministic process; Ai has no atomic propositions, and
Ai ∈ C(Qi).

The existence of a (P, (Qi)m
i=0, φ)-attacker means that if an adversary can

exploit all the Qi, then the adversary can attack P with respect to φ. Note that
an attacker A cannot succeed by blocking the system from having any runs at
all. Indeed, P ‖ A0 ‖ ... ‖ Am �|= φ implies that P ‖ A0 ‖ ... ‖ Am has at least
one infinite run violating φ.

Real-world computer programs implemented in languages like C or Java are
called concrete, while logical models of those programs implemented as algebraic
transition systems such as processes are called abstract. The motivation for syn-
thesizing abstract attackers is ultimately to recover exploitation strategies that
actually work against concrete protocols. So, we should be able to translate an
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abstract attacker (Fig. 2) into a concrete one (Fig. 8). Determinism guarantees
that we can do this. We also require the attacker and the vulnerable processes to
have no atomic propositions, so the attacker cannot “cheat” by directly changing
the truth-hood of the property it aims to violate.

For a given threat model many attackers may exist. We want to differentiate
attacks that are more effective from attacks that are less effective. One straight-
forward comparison is to partition attackers into those that always violate φ, and
those that only sometimes violate φ. We formalize this notion with ∃-attackers
and ∀-attackers.

Definition 6 (∃-Attacker vs ∀-Attacker). Let A be a (P, (Qi)m
i=0, φ)-

attacker. Then A is a ∀-attacker if P ‖ A0 ‖ ... ‖ Am |= ¬φ. Otherwise, A
is an ∃-attacker.

A ∀-attacker A always succeeds, because P ‖ A |= ¬φ means that every
behavior of P ‖ A satisfies ¬φ, that is, every behavior of P ‖ A violates φ. Since
P ‖ A �|= φ, there must exist a computation σ of P ‖ A such that σ |= ¬φ,
so, a ∀-attacker cannot succeed by blocking. An ∃-attacker is any attacker that
is not a ∀-attacker, and every attacker succeeds in at least one computation, so
an ∃-attacker sometimes succeeds, and sometimes does not. In most real-world
systems, infinite attacks are impossible, implausible, or just uninteresting. To
avoid such attacks, we define an attacker that produces finite-length sequences
of adversarial behavior, and then “recovers”, meaning that it behaves like the
vulnerable process it replaced (see Fig. 3).

Definition 7 (Attacker with Recovery). Let A be a (P, (Qi)m
i=0, φ)-attacker.

If, for each 0 ≤ i ≤ m, the attacker component Ai consists of a finite directed
acyclic graph (DAG) ending in the initial state of the vulnerable process Qi,
followed by all of the vulnerable process Qi, then we say the attacker A is an
attacker with recovery. We refer to the Qi postfix of each Ai as its recovery.

Note that researchers sometimes use “recovery” to mean when a system
undoes the damage caused by an attack. We use the word differently, to mean
when the property φ remains violated even under modus operandi subsequent to
attack termination.

3.3 Attacker Synthesis Problems

Each type of attacker - ∃ versus ∀, with recovery versus without - naturally
induces a synthesis problem.

Problem 1 ( ∃-Attacker Synthesis Problem (∃ASP)). Given a threat model TM,
find a TM-attacker, if one exists; otherwise state that none exists.

Problem 2 (Recovery ∃-Attacker Synthesis Problem (R-∃ASP)). Given a threat
model TM, find a TM-attacker with recovery, if one exists; otherwise state that
none exists.
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Fig. 2. From left to right: processes P , Q, A1, A2, A3. Let φ = G OK, and let the
interface of Q be C(Q) = (∅, {a, b, c}). Then P ‖ Q |= φ. A1 and A2 are both determin-
istic and have no input states. Let C(A1) = C(A2) = C(Q). Then, A1 and A2 are both
(P, (Q), φ)-attackers. A1 is a ∀-attacker, and A2 is an ∃-attacker. A3 is a ∀-attacker
with recovery consisting of a DAG starting at a3

0 and ending at the initial state q0 of
Q, plus all of Q, namely the recovery.

Fig. 3. Suppose A = (Ai)
m
i=0 is an attacker with recovery for TM = (P, (Ai)

m
i=0, φ).

Further suppose Ai has initial state ai
0, and Qi has initial state qi0. Then Ai should

consist of a DAG starting at ai
0 and ending at qi0, plus all of Qi, called the recovery,

indicated by the shaded blob. Note that if some Qi is non-deterministic, then there can
be no attacker with recovery, because Qi is a subprocess of Ai, and all the Ais must
be deterministic in order for A to be an attacker.

We defined ∃ and ∀-attackers to be disjoint, but, if the goal is to find an ∃-
attacker, then surely a ∀-attacker is acceptable too; we therefore did not restrict
the ∃-problems to only ∃-attackers. Next we define the two ∀-problems, which
remain for future work.

Problem 3 (∀-Attacker Synthesis Problem (∀ASP)). Given a threat model TM,
find a TM-∀-attacker, if one exists; otherwise state that none exists.

Problem 4 (Recovery ∀-Attacker Synthesis Problem (R-∀ASP)). Given a threat
model TM, find a TM-∀-attacker with recovery, if one exists; otherwise state
that none exists.
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4 Solutions

We present solutions ∃ASP and R-∃ASP for any number of attackers, and for
both safety and liveness properties. Our success criteria are soundness and com-
pleteness. Both solutions are polynomial in the product of the size of P and the
sizes of the interfaces of the Qis, and exponential in the size of the property
φ [35]. For real-world performance, see Sect. 5.

We reduce ∃ASP and R-∃ASP to model-checking. The idea is to replace the
vulnerable processes Qi with appropriate “gadgets”, then ask a model-checker
whether the system violates a certain property. We prove that existence of a
violation (a counterexample) is equivalent to existence of an attacker, and we
show how to transform the counterexample into an attacker. The gadgets and
the LTL formula are different, depending on whether we seek attackers without
or with recovery.

4.1 Gadgetry

A computation σ is a lasso if it equals a finite word α, then infinite repetition
of a finite word β, i.e., σ = α · βω. A prefix α of a computation σ is called a bad
prefix for P and φ if P has ≥ 1 runs inducing computations starting with α, and
every computation starting with α violates φ. We naturally elevate the terms
lasso and bad prefix to runs and their prefixes. We assume a model checker : a
procedure MC(P, φ) that takes as input a process P and property φ, and returns
∅ if P |= φ, or one or more violating lasso runs or bad prefixes of runs for P and
φ, otherwise [2].

Attackers cannot have atomic propositions. So, the only way for A to attack
TM is by sending and receiving messages, hence the space of attacks is within
the space of labeled transition sequences. The Daisy Process nondeterministically
exhausts the space of input and output events of a vulnerable process.

Definition 8 (Daisy Process). Let Q = 〈∅, I, O, S, s0, T, L〉 be a process with
no atomic propositions. Then the daisy of Q, denoted Daisy(Q), is the process
defined below, where L′ : {d0} → {∅} is the map such that L′(d0) = ∅.

Daisy(Q) = 〈∅, I, O, {d0}, d0, {(d0, w, d0) | w ∈ I ∪ O}, L′〉 (2)

Next, we define a Daisy with Recovery. This gadget is an abstract process, i.e.,
a generalized process with a non-empty set of initial states S0 ⊆ S. Composition
and LTL semantics for abstract processes are naturally defined. We implicitly
transform processes to abstract processes by wrapping the initial state in a set.

Definition 9 (Daisy with Recovery). Given a process Qi = 〈∅, I, O,
S, s0, T, L〉, the daisy with recovery of Qi, denoted RDaisy(Qi), is the abstract
process RDaisy(Qi) = 〈AP, I, O, S′, S0, T

′, L′〉, with atomic propositions AP =
{recoveri}, states S′ = S ∪ {d0}, initial states S0 = {s0, d0}, transitions
T ′ = T ∪ {(d0, x, w0) | x ∈ I ∪ O,w0 ∈ S0}, and labeling function L′ : S′ → 2AP

that takes s0 to {recoveri} and other states to ∅. (We reserve the symbols
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recover0, ... for use in daisies with recovery, so they cannot be sub-formulae
of the property in any threat model.)

4.2 Solution to ∃ASP

Let TM = (P, (Qi)m
i=0, φ) be a threat model. Our goal is to find an attacker for

TM, if one exists, or state that none exists, otherwise. First, we check whether
the system P ‖ Daisy(Q0) ‖ ... ‖ Daisy(Qm) satisfies φ. If it does, then no
attacker exists, as the daisy processes encompass any possible attacker behavior.
Define a set R returned by the model-checker MC:

R = MC(P ‖ Daisy(Q0) ‖ ... ‖ Daisy(Qm), φ) (3)

If R = ∅ then no attacker exists. On the other hand, if the system violates
φ, then we can transform a violating run into a set of attacker processes by
projecting it onto the corresponding interfaces. Choose a violating run or bad
prefix r ∈ R arbitrarily. Either r = α is some finite bad prefix, or r = α · βω

is a violating lasso. For each 0 ≤ i ≤ m, let αi be the projection of α onto the
process Daisy(Qi). That is, let αi = []; then for each (s, x, s′) in α, if x is an
input or an output of Qi, and q, q′ are the states Daisy(Qi) embodies in s, s′,
add (q, x, q′) to αi. For each αi, create an incomplete process Aα

i with a new
state sα

j+1 and transition sα
j

z−→ sα
j+1 for each αi[j] = (di

0, z, di
0) for 0 ≤ j < |αi|.

If r = α · βω is a lasso, then for each 0 ≤ i ≤ m, define Aβ
i from βi in the same

way that we defined Aα
i from αi; let A′

i be the result of merging the first and
last states of Aβ

i with the last state of Aα
i . Otherwise, if r = α is a bad prefix,

let A′
i be the result of adding an input self-loop to the last state of Aα

i , or an
output self-loop if Qi has no inputs. Either way, A′

i is an incomplete attacker.
Finally let Ai be the result of making every input state in A′

i input-enabled via
self-loops, and return the attacker A = (Ai)m

i=0. An illustration of the method
is given in Fig. 4.

Theorem 1 (∃ASP Solution is Sound and Complete). Let TM =
(P, (Qi)m

i=0, φ) be a threat model, and define R as in Eq. 3. Then the follow-
ing hold. 1) R �= ∅ iff a TM-attacker exists. 2) If R �= ∅, then the procedure
above eventually returns a TM-attacker.

4.3 Solution to R-∃ASP

Let TM = (P, (Qi)m
i=0, φ) be a threat model as before. Now our goal is to find

a TM-attacker with recovery, if one exists, or state that none exists, otherwise.
The idea to solve this problem is similar to the idea for finding attackers without
recovery, with two differences. First, the daisy processes are now more compli-
cated, and include recovery to the original Qi processes. Second, the formula
used in model-checking is not φ, but a more complex formula ψ to ensure that
the attacker eventually recovers, i.e., all the attacker components eventually
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Fig. 4. Example threat model TM
′ on top, followed by a violating run in R, followed

by translation of the run into attacker.

recover. We define the property ψ so that in prose it says “if all daisies even-
tually recover, then φ holds”. We then define R like before, except we replace
daisies with daisies with recovery, and φ with ψ, as defined below.

ψ =
( ∧

0≤i≤m

F recoveri

)
=⇒ φ (4)

R = MC(P ‖ RDaisy(Q0) ‖ ... ‖ RDaisy(Qm), ψ) (5)

If R = ∅ then no attacker with recovery exists. If any Qi is not deterministic,
then likewise no attacker with recovery exists, because our attacker definition
requires the attacker to be deterministic, but if Qi is not and Qi ⊆ Ai then
neither is Ai.

Otherwise, choose a violating run (or bad prefix) r ∈ R arbitrarily. We pro-
ceed as we did for ∃ASP but with three key differences. First, we define αi
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by projecting α onto RDaisy(Qi) as opposed to Daisy(Qi). Second, for each
0 ≤ i ≤ m, instead of using Aβ

i if r is a lasso, or adding self-loops to the final
state if r is a bad prefix, we simply glue Aα

i to Qi by setting the last state of Aα
i

to be the initial state of Qi. (The result of gluing is a process; the initial state
of Aα

i is its only initial state.) Third, instead of using self-loops to input-enable
input states, we use input transitions to the initial state of Qi. This ensures the
pre-recovery portion is a DAG. Then we return A = (Ai)m

i=0.

Theorem 2 (R-∃ASP Solution is Sound and Complete). Let TM =
(P, (Qi)m

i=0, φ) be a threat model, and define R as in Eq. 5. Assume all the Qis
are deterministic. Then the following hold. 1) R �= ∅ iff a TM-attacker with
recovery exists. 2) If R �= ∅, then the procedure described above eventually returns
a TM-attacker with recovery.

5 Case Study: TCP

Implementation. We implemented our solutions in an open-source tool called
Korg. We say an attacker A for a threat model TM = (P, (Qi)m

i=0, φ) is a
centralized attacker if m = 0, or a distributed attacker, otherwise. In other words,
a centralized attacker has only one attacker component A = (A), whereas a
distributed attacker has many attacker components A = (Ai)m

i=0. Korg handles
∃ASP and R-∃ASP for liveness and safety properties for a centralized attacker.
Korg is implemented in Python 3 and uses the model-checker Spin [15] as its
underlying verification engine.

TCP is a fundamental Internet protocol consisting of three stages: connec-
tion establishment, data transfer, and connection tear-down. We focus on the
first and third stages, which jointly we call the connection routine. Our approach
and model (see Fig. 5, 6) are inspired by Snake [19]. Run-times and results are
listed in Table 1.

Fig. 5. TCP threat model block diagram. Each box is a process. An arrow from process
P1 to process P2 denotes that a subset of the outputs of P2 are exclusively inputs of
P1. Peers 1 and 2 are TCP peers. A channel is a directed FIFO queue of size one
with the ability to detect fullness. A full channel may be overwritten. 1toN, Nto1,
2toN, and Nto2 are channels. Implicitly, channels relabel: for instance, 1toN relabels
outputs from Peer 1 to become inputs of Network; Network transfers messages
between peers via channels, and is the vulnerable process.
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Threat Models. Rather than communicating directly with the Network, the
peers communicate with the channels, and the channels communicate with the
Network, allowing us to model the fact that packets are not instantaneously
transferred in the wild. We use the shorthand chan!msg to denote the event
where msg is sent over a channel chan; it is contextually clear who sent or
received the message. We abstract the lower network stack layer TCP relies on
with Network, which passes messages between 1toN ‖ 2toN and Nto1 ‖
Nto2. We model the peers symmetrically.

Fig. 6. A TCP peer. For i = 1, 2, if this is Peer i, then snd := itoN and rcv := Ntoi.
All the states except i0, ..., i5, and End are from the finite state machine in the TCP
RFC [29]. The RFC diagram omits the implicit states i0, ..., i5, instead combining send
and receive events on individual transitions. In the RFC, Closed is called a “fictional
state”, where no TCP exists. We add a state End to capture the difference between
a machine that elects not to instantiate a peer and a machine that is turned off. We
label each state s with a single atomic proposition si. Dashed transitions are timeout
transitions, meaning they are taken when the rest of the system deadlocks.

Given a property φ about TCP, we can formulate a threat model TM as
follows, where we assume the adversary can exploit the lower layers of a network
and ask if the adversary can induce TCP to violate φ:

TM = (Peer 1 ‖ Peer 2 ‖ 1toN ‖ 2toN ‖ Nto1 ‖ Nto2, (Network), φ)
(6)

We consider the properties φ1, φ2, φ3, giving rise to the threat models
TM1,TM2,TM3.
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TM1: No Half-Closed Connection Establishment. The safety property φ1

says that if Peer 1 is in Closed state, then Peer 2 cannot be in Established
state.

φ1 = G(Closed1 =⇒ ¬Established2) (7)

Korg discovers an attacker that spoofs the active participant in an active-passive
connection establishment (see message sequence chart in Fig. 7), as described in
[13].

Fig. 7. Time progresses from top to bottom. Labeled arrows denote message exchanges
over implicit channels. The property is violated in the final row; after this recovery may
begin.

TM2: Passive-Active Connection Establishment Eventually Succeeds.
The liveness property φ2 says that if it is infinitely often true that Peer 1 is in
Listen state while Peer 2 is in SYN Sent state, then it must eventually be true
that Peer 1 is in Established state.

φ2 = (GF(Listen1 ∧ SYN Sent2)) =⇒ FEstablished1 (8)

Korg discovers an attack where a SYN packet from Peer 2 is dropped. The
corresponding attacker code is given in the Promela language of Spin in Fig. 8.

Fig. 8. Body of Promela process for a TM2-attacker with recovery generated by
Korg. Peer 2 transitions from Closed state to SYN Sent state and sends SYN to Peer

1. The attacker drops this packet so that it never reaches Peer 1. Peer 1 then tran-
sitions back and forth forever between Closed and Listen states, and the property is
violated. Because Spin attempts to find counterexamples as quickly as possible, the
counterexamples it produces are not in general minimal.

TM3: Peers Do Not Get Stuck. The safety property φ3 says that the two
peers will never simultaneously deadlock outside their End states. Let Si denote
the set of states in Fig. 6 for Peer i, and S′

i = Si \ {End}.

φ3 =
∧

s1∈S′
1

∧

s2∈S′
2

¬FG(s1 ∧ s2) (9)
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For the problem with recovery, Korg discovers an attacker that selectively drops
the ACK sent by Peer 1 as it transitions from i0 to Established state in an
active/passive connection establishment routine, leaving Peer 2 stranded in
SYN Received state, leading to a violation of φ3. Similar bugs exist in real-world
implementations, e.g. [31].

Performance. Performance results for Case Study are given in Table 1. Our
success criteria was to produce realistic attackers faster than an expert human
could with pen-and-paper. We discovered attackers in seconds or minutes as
shown in Table 1.

Table 1. For each property φi, we asked Korg 10 times to generate 10 attackers with
recovery, and 10 without, on a 16 GB 2018 Intel c© Coretm i7-8550U CPU running Linux
Mint 19.3 Cinnamon. Korg may generate duplicate attackers, so for each property
(Column 1), we list the average time to generate a unique attacker without recovery
(Column 2) or with (Column 3), and the total number of unique attackers found
without recovery (Column 4) or with (Column 5). E.g., for φ3, of 100 attackers with
recovery generated over about four hours, five were unique and 95 duplicates, so Korg

took about 2.3 min per attacker, or, 45min per unique attacker. Instructions and code
to reproduce these results are given in the GitHub repository.

Property
Avg. Runtime (s)

Unique attacker
Unique attackers found

∃ASP R-∃ASP ∃ASP R-∃ASP

φ1 0.32 0.49 7 5

φ2 0.45 0.48 5 5

φ3 876.74 2757.98 4 5

6 Related Work

Prior works formalized security problems using game theory (e.g., FlipIt [34],
[22]), “weird machines” [7], attack trees [37], Markov models [33], and other
methods. Prior notions of attacker quality include O-complexity [6], expected
information loss [30], or success probability [25,36], which is similar to our con-
cept of ∀ versus ∃-attackers. The formalism of [36] also captures attack conse-
quence (cost to a stakeholder).

Attacker synthesis work exists in cyber-physical systems [3,18,25,27], most
of which define attacker success using bad states (e.g., reactor meltdown, vehicle
collision, etc.) or information theory (e.g., information leakage metrics). Prob-
lems include the actuator attacker synthesis problem [23]; the hardware-aware
attacker synthesis problem [32]; and the fault-attacker synthesis problem [4].

Maybe the most similar work to our own is ProVerif [5], which verifies
properties of, and generates attacks against, cryptographic protocols. We formal-
ize the problem with operational semantics (processes) and reduce it to model
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checking, whereas ProVerif uses axiomatic semantics (ProLog clauses) and
reduces it to automated proving. Another similar tool is NetSMC [39], a model-
checker that efficiently finds counter-examples to security properties of stateful
networks.

Existing techniques for automated attack discovery include model-guided
search [16,19] (including using inference [8]), open-source-intelligence [38], bug
analysis [17], and genetic programming [21]. The generation of a failing test-case
for a protocol property is not unlike attack discovery, so [24] is also related.

This paper focuses on attacker synthesis at the protocol level, and thus differs
from the work reported in [20] in two ways: first, the work in [20] synthesizes
mappings between high-level protocol models and execution platform models,
thereby focusing on linking protocol design and implementation; second, the
work in [20] synthesizes correct (secure) mappings, whereas we are interested in
synthesizing attackers.

7 Conclusion

We present a novel formal framework for automated attacker synthesis. The
framework includes an explicit definition of threat models and four novel, to
our knowledge, categories of attackers. We formulate four attacker synthesis
problems, and propose solutions to two of them by program transformations
and reduction to model-checking. We prove our solutions sound and complete;
these proofs are available online [14]. Finally, we implement our solutions for the
case of a centralized attacker in an open-source tool called Korg, apply Korg

to the study of the TCP connection routine, and discuss the results. Korg and
the TCP case study are freely and openly available1.
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Abstract. Characterizing attacker behavior with respect to Cyber-
Physical Systems is important to assuring the security posture and
resilience of these systems. Classical cyber vulnerability assessment
approaches rely on the knowledge and experience of cyber-security
experts to conduct security analyses and can be inconsistent where the
experts’ knowledge and experience are lacking. This paper proposes a
flexible attacker modeling framework that aids in the security analy-
sis process by simulating a diverse set of attacker behaviors to predict
attack progression and provide consistent system vulnerability analysis.
The model proposes an expanded architecture of vulnerability databases
to maximize its effectiveness and consistency in detecting CPS vulner-
abilities while being compatible with existing vulnerability databases.
The model has the power to be implemented and simulated against an
actual or virtual CPS. Execution of the attacker model is demonstrated
against a simulated industrial control system architecture, resulting in a
probabilistic prediction of attacker behavior.

Keywords: CPS · Security · Attacker modeling

1 Introduction

To secure systems from known and emerging threats, systems engineers and
security analysts alike need to integrate an attacker’s view of potential vulnera-
bilities into their design, development, and analysis process as early as possible.
To date, this attacker perspective activity has been largely a manual process
conducted by subject matter experts who examine a system and identify pos-
sible vulnerabilities and weaknesses. Understanding the potential threat behav-
iors and capabilities of a cyber-actor or threat agent with respect to a cyber or
cyber-physical system (CPS) is critical for risk assessment and the development
of effective security countermeasure solutions [11,17].

A promising way forward is the use of formal attacker models that attempt
to characterize and capture the expected behavior of attackers against a CPS.
Developing accurate attacker-models, however, is difficult due to the number
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of factors that influence and encompass attacker behavior. To understand the
behavior of an attacker many questions may be asked such as “Who is the
attacker?”, “What resources are at the attacker’s disposal?”, and “What is the
motivation of the attacker?”. Quantifying the answers to these questions, how-
ever, is challenging in the absence of absolute metrics and incomplete situation
awareness. To partially address these challenges, in this paper we present a novel
modular attacker modelling framework (AMF) that is: (1) capable of capturing
and quantifying complex attacker behavior and, (2) is readily extensible to incor-
porate new or emerging aspects of attacker behavior.

2 Related Work

In attacker modeling, a common approach is to create a correlation model where
the designer selects a series of attacker properties such as skill level, resources,
intent, and motivation, and attempts to develop cumulative correlation functions
that effectively predict attacker behavior when applied to real-world attack-
ers [10]. Rocchetto et al. performed a literature search and created a six-profile
model able to effectively describe attacker profiles from the majority of cited
literature [20]. The use of this method, however, requires the user to be aware
of the skill level of the attacker. In order to apply Rocchetto’s method to a
realistic attacker model, a probability mass function is used to simulate the
non-determinism in the skillset of an unknown attacker.

Orojloo et al. [18] proposed an attack modeling approach that applied attack
trees to model how characteristics of a particular attack (access, knowledge
required, skill required, and level of user interaction) influence the behavior of
an attacker. While serving as an effective foundation, the attack tree method
as proposed by Orojloo requires a comprehensive perspective of the CPS which
must be created through a manual process for each CPS under consideration.
This design process becomes tedious when considering a large CPS or one with
multiple attack vectors to a single target.

A common approach to representing attacker behavior against a CPS is appli-
cation of the Markov decision process (MDP) [8,12]. The size of the Markov
model explodes, however, when considering a large CPS with multiple nodes,
each having multiple potential actions. Markov representation also lacks the abil-
ity to clearly depict the nature of various paths an attacker may take through a
system. An alternate to the full MDP is the Partially Observable Markov Deci-
sion Process (POMDP) as in [7]. This model allows the application of the Markov
methodology while limiting the state-space of the model to a single attack-path.
We propose an alternate scheme using a one-step look-ahead formalism as a
solution.

Automation of the attack-analysis process for a complex CPS was explored
in [13], where the ADVISE method is proposed. The ADVISE method requires
as input a description of the system, a description of the adversary, a list of the
desired security metrics, and a description of all vulnerability information per-
taining to the system. In application to a real system, researching, compiling, and
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organizing all vulnerability information related to a CPS is a monumental task.
Databases such as the Common Attack Pattern Enumeration and Classification
(CAPEC), the Common Weakness Enumeration (CWE), the Common Vulner-
abilities and Exposures (CVE), and the Common Platform Enumeration (CPE)
have been applied to attack modeling to aid in vulnerability research [9,14]. We
propose the application of CAPEC, CWE, CVE, and CPE search engines as an
aid for the generation of a hybrid action database.

Due to the diversity of CPSs, attacker models are often defined within the
context of a specific system [5,9,14]. In this paper, we propose a modular AMF
that is capable of modeling complex attacker behavior against a full CPS and
is readily expandable to include additional aspects of attacker behavior. The
authors propose two components of the attacker model as novel. First, the
authors propose a formalization between an attacker profile and an attacker’s
behavior that allows the prediction of the behavior of profile-specific attackers
against a CPS. This approach allows an attacker-specific security review and aids
in prioritizing the relevance of attacks and vulnerabilities in a CPS. Second, the
authors propose a modular scheme for describing cyber-physical system archi-
tectures as well as the attack progression of an attacker through cyber-physical
systems.

The remainder of the paper is organized as follows. Section 3 describes the
attacker-modeling framework. A case study is explored in Sect. 4. Section 5 sum-
marizes the work and proposes future research directions.

3 Overview of the Attacker Model

Traditional attacker behavior is captured as a series of observations regarding
the attacker motivation and decision process. These observations are captured
in the proposed AMF as rules. A rule may be formally defined as a facet of
an attacker’s behavior which observes a cause/effect relationship between an
influencing parameter and the attacker’s actions. The proposed AMF accepts a
series of rules which together define the behavior of the attacker. The attacker
model overview in Fig. 1 depicts the relationship between the attacker and the
CPS. Sample rules defining attacker behavior are implemented in modules such
as the CPS Knowledge and the Target Node Selection modules. This provides
a test-bed to explore the role and influence of individual rules on the composite
attacker decision process. This also provides a flexible framework that allows
validation of the AMF against a particular dataset where the rules the AMF
implements may be refined and calibrated to achieve a model that accurately
reflects the behavior of a known attacker or set of attackers.

Relationships between modules are characterized by connected arrows, where
upstream modules occur earlier in the attacker decision process. The proposed
attacker model operates on a cyclical action/feedback scheme where an action
is some step the attacker performs in the attack process and feedback is any
information the attacker receives as a result of the action. The progression of
the attack through the CPS is described as the attack state. The attack state
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represents a single action and is a tuple of static properties and dynamic vari-
ables. Properties are information that is static throughout the attack process
and in Fig. 1 includes the Action Database and the Attacker Profile. Variables
include information that changes as the attack progresses such as the attacker
CPS Knowledge. The action performed for each state of the attack is a product
of all static properties and dynamic variables and is discussed further in Sect. 3.6.

Attacker
Profile

Legend

Attacker

One-step Look-
Ahead Action

Generator

Action
Assesment
(Evaluation)

Action
Sampler

Feedback Action

Cyber-Physical System

CPS
Knowledge

Target Node
Selection

Module Variable

Action
Database

Property

Fig. 1. Attacker model overview

3.1 Cyber-Physical System

In the proposed attacker-modeling framework, the CPS is modeled and described
as a composition of nodes, edges, attack vectors, and entry points. A node rep-
resents a machine or other potentially vulnerable device that has functional
purpose within the CPS. An edge represents a communication link between two
nodes that may be used to transmit information, while an attack vector is any
edge that may be used for an attack. An entry point is an edge directed into the
CPS from outside the CPS that may be used by an attacker to gain access to the
system. Establishing well-formed boundaries between nodes of the CPS and rela-
tionships between them allows a formal description of a Cyber-Physical System.
Programming tools such as SysML [1] utilize the node/edge system description
scheme and may be readily integrated with the CPS design process for attacker
model automation.

3.2 CPS Knowledge

We begin with making the reasonable assumption that as the attack or probing
progresses, the attacker will begin to learn information about the target system.
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This behavior is captured in the CPS knowledge module. The rules that the CPS
knowledge module implements are:

– When starting an attack, the attacker only has knowledge of the system entry
points.

– As the attack progresses the attacker will discover new information about the
CPS.

– If a node is compromised, all nodes it is connected to are discovered and
added to the CPS knowledge.

Information about the CPS is fed into the attacker’s CPS knowledge module
as feedback. If a node is compromised it is considered owned by the attacker
and capable of performing pivoting attacks. The initial attacker CPS knowledge
is simplified for demonstration purposes, but in a more complex application
could include behaviors involving the attacker’s discovery of the target system.
More complex rules may be applied to node ownership such as defining levels of
ownership (based on privilege escalation).

3.3 Target Node Selection

When the attacker goes to perform an action against a system, the attacker
must first select a target node. The rules that the target node selection module
implements are:

– The attacker will only target nodes that exist in the attacker’s CPS Knowl-
edge.

– The attacker will not target a node if it is already compromised.
– The attacker will not target a node if the attacker has exhausted all qualified

actions against it.
– If an attacker targets a node, the attacker will not change targets until

exhausting all actions against it.
– If more than one target is valid, the attacker will select a target node at

random from amongst the valid nodes.

Several additional rules may be added to capture the tendency of an attacker to
target nodes associated with the end-goal (often referred to as the honey-pot).

3.4 Action Database

The purpose of the Action Database module is to capture behaviors influenced by
the actions available to the attacker. The action database contains descriptions
of all actions known about the CPS. Each action within the database contains
several fields of information including the action profile, the action description,
the target criteria, and a list of prerequisite actions. The action profile contains a
quantitative description of the user and use-case of the action, which is used for
quantifying a relationship between each action and the attacker profile defined
for the attacker model as discussed further in Sect. 3.6. The action description is
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a plain-text description of how the action works in as much detail as is possible.
The target criteria defines what system(s) the action is valid against. The pre-
requisite attacks describe any actions that must be completed before this action
may be attempted.

A critical component to the viability of the attacker model is the database
population scheme. CAPEC [16], CWE [2], CVE [15], and CPE [3] are amongst
the most popular and provide different approaches to cataloguing attacks,
attack descriptions, and attack relationships. Search engines that make use of
online attack and vulnerability databases aid in effectively generating an action
database for the attacker model. One tool that was applied to populate the action
database for the case study in Sect. 4 was the CYBOK tool [6], which is a literal
search engine for CAPEC, CWE, and CVE capable of generating vulnerability
data for individual queries or entire systems.

3.5 One-Step Look-Ahead Generator

The one-step look-ahead generator applies the attacker’s knowledge of the CPS
to filter out all attacks that are invalid for the current attack state. Filters are
non-probabilistic in nature and may depend on any information regarding the
current state of the attack or the description of the node. This attacker model
applies three filters.

1. The attacker will only consider actions that meet the target criteria
2. The attacker will not consider an action that has already been performed on

the target
3. The attacker will not consider an action if the edge relating the current node

to the target node is not a viable propagation path for that action

We define A as the set of all m known actions in the action database and Φ ⊆ A
as the set of actions known by the attacker. The three filters are defined as
Φtarget ⊆ Φ, Φex ⊆ Φ, and Φvect ⊆ Φ for filters 1, 2, and 3 respectively. The
set of actions that are valid for the attacker to perform in the given state of
the attack (Φvalid) are then defined by Eq. 1, where the attack space can be
visualized in Fig. 2.

Φvalid = Φex ∩ Φvect ∩ Φtarget (1)

3.6 Action Assessment

When an attacker goes to select an action, characteristics about the attacker
will influence the selection of the attack. This behavior is captured in the action
assessment module. The rules applied here are:

– An attacker’s behavior is dependent on one or more primary influencing fac-
tors.

– Actions may have properties that allow them to be correlated to attackers.
– An attacker’s attack selection decision can be predicted by evaluating the

sum of influencing factors between an attacker and an action.
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Fig. 2. The intersection of action selection filters applied to the action database.

The action assessment module calculates the probability of the attacker per-
forming each of the actions based on probability functions that take as operands
the attacker profile, the attack profile, and the current state of the attack.

Attacker Profiles and Attack Profiles. Attacker profiles are a topic well
covered in literature with no recognized standards for what characteristics best
model an attacker. The purpose of an attacker profile is to capture characteristics
about an attacker that influence the attacker’s behavior, thereby describing the
expected behavior of the attacker. The characteristics that define the attacker
profile are termed attacker properties. Rocchetto et al. [20] performed a literature
review on attacker profiles for CPSs in an attempt to find a unifying attacker
profiling model to describe various attackers from multiple different research
studies. In conclusion, Rocchetto proposed a set of six attacker profiles com-
posed of twenty-nine attacker properties that effectively described the majority
of attacker profiles in the referenced literature.

An action profile is often represented as a set of properties describing the
characteristics of the action [20]. This, however, implies linearly proportionality
to an attacker profile, which is not universally true. For example, an attacker with
a high skill set is not necessarily more likely to perform an attack that requires
a high skill set when an easier attack may succeed as well. We capture this
behavior by defining an attack profile as the profile of the attacker expected to
use that attack. Because attacker behavior is constantly changing as technology
evolves, this profiling technique may be reinforced by empirical data from records
of attack history. Collaborations such as MITRE’s ATT&CK framework [4] may
aid in assessment of current threat actors. This facilitates an attacker model that
can better emulate realistic and relevant threats by allowing the user to base the
relationship between attackers and their actions off of current attacker data.
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As such, we define an attacker profile (Δ) as an n-dimensional space of
attacker properties (δi) such that Δ = {δ1, δ2, . . . , δn} for an attacker profile
having n properties. An example attack space can be seen in Fig. 3 where the
attacker profile and several action profiles are plotted in the 3-dimensional space.
The probability of an attacker performing an action is a function of the distance
between the attacker profile and the action profile in n-dimensional space.

Fig. 3. An example 3-dimensional attack
space showing the attacker profile and
several action profiles.

Fig. 4. An example of a probability mass
function for a probabilistic attacker pro-
file against a nuclear power plant.

Probabilistic Attacker Profiles. In applying Rocchetto’s attacker profiles
to an attacker model it is important to note that in a real-world application
one cannot assume which attacker will be attacking a system. In order to simu-
late this non-deterministic behavior, two types of attacker profiles are adopted
which are the static attacker profile and the probabilistic attacker profile. A static
attacker profile represents one of the six attacker profiles defined by Rocchetto
et al. [20]. A probabilistic attacker profile may be represented as a probability
mass function (PMF) of the six profiles. The PMF is generated by assigning each
of the six attacker profiles (Δ1, . . . ,Δ6) a likelihood of attacking (li) such that
0 ≤ li ≤ 1.The Probability of attack of a specific attacker profile is calculated
using:

P (Δi) =
li∑n
j=1 lj

(2)

where
∑n

j=1 P (Δj) = 1. The PMF in Fig. 4 is an example probabilistic attacker
profile designed to mimic the probability of attackers against a nuclear power
plant. At the beginning of the attack analysis process, the probabilistic attacker
profile is sampled to obtain a discrete attacker profile which is recognized as the
attacker for the remainder of the attack process.

Attack Probability Functions. The probability that the attacker will perform
an attack at any given time is calculated using the attack probability function.
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Attacker properties may be one of three types which are sets, bounded ranges,
and unbounded ranges. Non-ordered sets are considered to have a scaled property
value γ = 1 if the attacker profile property and the attack profile property match
and γ = 0 otherwise. Ordered set values may be mapped to the scaled property
range (0 ≤ γ ≤ 1) using Fuzzy set theory as demonstrated by Patil et al. in [19].

Bounded ranges are numerical ranges where the value of a property (ε) may
only fall between a lower bound (εL) and an upper bound (εH). Bounded ranges
are linearly mapped to the scaled property value (γ : 0 ≤ γ ≤ 1) using:

γ =
ε − εL

εH − εL
(3)

Several scaling functions exist for unbounded ranges such as the percent-
difference function, the logistic function, and the hyperbolic tangent. The value
weighting in these functions, however, is non-linear, which does not properly
scale different property values where a score considered median is represented
by a numerically large or numerically small value (>100 or <1 respectively).
Therefore, we propose converting the unbounded property values to a bounded
range by first evaluating the maximum (γmax) and minimum (γmin) values for
all actions within the database, then using the local maximum and minimum to
scale the unbounded range.

We designate the set of m available actions in the action database as A =
{A1, A2, . . . , Am}. Each action Ai (i = 1, 2, . . . ,m) has an associated set of
scaled property values Γi = {γ1

i , γ2
i , . . . , γn

i }. For a given attacker profile (Δ)
with n scaled property values Θ = {θ1, θ2, . . . , θn}, the distance (di) between the
attacker and each action is calculated by the distance between the two profiles
in n-dimensional space using:

di = f(Θ;Γi) =

√
√
√
√

n∑

j=1

1
β2
j

(
θj − γj

i

)2

(4)

where βj is a criticality factor such that {β ∈ R|0 ≤ β ≤ 1} which increases
the distance for properties with a β < 1 criticality. The score of each action (si)
is inversely proportional to di and calculated using the function:

si = 1 − di∑m
j=1 dj

i = 1, . . . ,m (5)

This equation is unique in that it calculates the inverse of the distance without
applying a nonlinear value-weighting as is observed in the inverse function or
exponential functions such as the Softmax function. According to the score for
each action, the probability that the attacker will take action Ai is calculated
using the function:

P [Ai] =
si∑m
j=1 sj

(6)

Equation (6) has the intuitive interpretation that the higher the score the
attacker gets for an action, the higher the probability that this action will be
chosen by the attacker.
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3.7 Action Sampler

The last module in the attacker model is the action sampler module. The action
sampler module implements the following rule: After evaluating the attacks, the
attacker is more likely to choose an attack with a high probability than an attack
with a low probability.

The action sampler receives as inputs all attacks for the target system with
their attack probability values and selects one of the actions by sampling a
weighted randomizing function (randw()) mapped to the probabilities of the set
of probabilistic actions Δ = {Ai, P [Ai]}. This action is then performed by the
attacker against the CPS.

4 Case Study

For application of the proposed AMF, we observe the Industrial Control System
(ICS) in Fig. 5 composed of nodes and communication channels. This example
ICS is used to control a simulated exothermic continuous stirred tank reactor
(CSTR) using an NI cRIO controller. The target for the attack is the Basic
Process Control System (BPCS, N4). Control or disruption of the BPCS by the
attacker indicates a successful attack.

relationship
Programming WS 

Windows 7 Machine
(N1)

Monitoring WS 
Windows 7 Machine

(N2)

LAN
(C1)

SIS 
NI cRIO 9064

(N3)

BPCS 
NI cRIO 9064

(N4)

MODBUS
(C2)

LabVIEW RT 
NI cRIO 9063

(N5)

Interaction PC 
Windows 7 Machine

(N6)

node
attributes

(ID)

comm
(ID)

Firewall
Cisco ASA

(N7)

USB
(C4)

USB
(C4)

USB
(C4)

Cloud
(C3)

Fig. 5. Case study ICS relational diagram

4.1 ICS Formal Description

The ICS consists of 7 nodes, each composed of key attributes included in Fig. 5.
The system is described as having 4 entry points which include N1, N2, and
N6 via infected USB and N7 via remote access. Six properties are selected as a
subset of those described by Rocchetto et al. [20] to describe the attacker and
action profiles which include Access, Finances, Knowledge, Manpower, Motiva-
tion, and Tools. Access, Motivation, and Tools are defined as set properties with
values of {Direct, Wireless, Offsite} for Access and {Low, Medium, High} for
Motivation and for Tools. Knowledge is defined as a bounded property with a
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0 ≤ Knowledge ≤ 10 range. Finances and Manpower are defined as unbounded
properties. These properties are not intended to be a holistic description of the
attacker behavior, but rather to demonstrate the principles and dynamics of the
different types of profile properties. The criticality factor is kept at unity (1) for
all profile properties. The attacker profile PMF in Fig. 4 was defined as a set of
6 attacker profiles with property values in Table 1. CAPEC, CWE, CVE, and
CPE databases were used to search for vulnerability information. The CAPEC
and CWE databases were used to identify potential attack patterns and weak-
nesses respectively, aiding in the discovery of associated CVEs. Table 2 contains
a sample profile set for the vulnerabilities found for the ICS nodes.

Table 1. Attacker profiles and property values

Profile Access Finances Knowledge Manpower Motivation Tools

Basic user Offsite 100 2 40 Low Low

Cybercriminal Offsite 1000 5 160 Medium High

Hactivist Wireless 500 6 1500 High Medium

Insider Onsite 100 7 10 Medium Medium

Nation state Offsite 1000000 9 100000 High High

Terrorist Onsite 10000 4 1000 High Medium

Table 2. Case study action profiles

ID Name Targets A F K Mp Mo T

V1 Remote-Access trojan Windows 7 machine Offsite 0 3 20 Low Low

V2 CVE-2017-2779 Windows 7 machine Onsite 10000 9 5000 High Mid

V3 CVE-2017-2775 Windows 7 machine Offsite 6000 10 8000 High Mid

V4 MODBUS MITM NI cRIO 9064/9063 Onsite 50000 9 500 High Mid

V5 MODBUS DOS NI cRIO 9064/9063 Offsite 40000 6 200 High Mid

V6 Code injection NI cRIO 9064 Onsite 100 4 300 Mid Low

V7 Watering-Hole Windows 7 machine Offsite 2000 6 300 Mid Mid

V8 CVE-2014-4115 Windows 7 machine Onsite 1200 7 800 High High

V9 CVE-2010-2568 Windows 7 machine Onsite 10000 8 2000 High High

V10 CVE-2019-1713 Cisco ASA Offsite 5000 9 100 High Mid

A =Access, F =Finances, K =Knowledge, MP= Manpower, M =Motivation, T = Tools

4.2 Attacker Model Execution

Sampling the PMF results in the selection of the Nation State attacker. The
attacker profile is then evaluated against the CPS. Initial attacker knowledge
assumed includes the entry vectors E1, E2, E3, and E4, along with the corre-
sponding existence of nodes N1, N2, N6, and N7. The modeling cycle in Fig. 1
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begins and is repeated until either the target is reached or there are no actions
remaining for the attacker to perform. Figure 6 shows the progression of the
attack as a POMDP, including each decision the attacker made in the attacker
process and the probability of each decision.

0.25 0.25 0.25 0.25

Begin

E1

0.3214 0.3272 0.3513

E2 E3 E4Entry Target
Selection

V1 V7

0.3333 0.3333 0.3333

V8

0.4678 0.5322

N3N1 N4

Action
Selection

Target Node
Selection

0.3333 0.3333 0.3333

V4 V5

0.4678 0.5322

N4N1 N5

V4 V5

Action
Selection

Target Node
Selection

Action
Selection

Fig. 6. Diagram of attacker CPS Knowledge upon completion of the attack, including
attack progression.

4.3 Attack Review

The steps taken to complete the attack in Fig. 6 represent one of many possible
attacks that may have been performed by the attacker. The attacker was able to
compromise the CPS by exploiting three vulnerabilities. Step 1 used an infected
USB thumb-drive to gain access to the monitoring workstation. Step 2 used a
MODBUS man-in-the-middle attack to take over the SIS cRIO. Step 3 used a
MODBUS DOS attack to disrupt the operation of the BPCS.

5 Conclusion and Future Work

The Attacker Modeling Framework we present significantly builds upon exist-
ing research and injects a more theoretical foundation for system behavior and
attacker causality models. The flexibility of the framework readily integrates a
variety of complex attacker behaviors. The proposed attack probability func-
tions quantify the influence of attacker characteristics on the attacker’s decision
process and provide probabilistic predictions for the attacker behavior.
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Preliminary findings indicate that the proposed method scales well; specif-
ically with respect to the decision space of a traditional MDP or attack-tree
analysis methods which would grow exponentially. The POMDP analysis frame-
work provides manageable attack scenarios describing system vulnerabilities and
putting the attack process in the context of the CPS. The case study shows the
benefit of the attacker decision-by-decision analysis, allowing the cyber analyst
and system engineers to have deeper insights into potential vulnerability path-
ways into and through the CPS.

Proposed future work includes,

1. The implementation of additional rules defined in related literature
2. The development of a tool to aid in attack scenario design and automation

of the attack analysis process
3. Exploration of different techniques to train and calibrate the AMF
4. The application of the AMF to recorded attacker data-sets from behavioral

analysis studies
5. The integration of a penetration-testing framework such as Metasploit into

the attacker-model for analysis against a SCADA test-bed
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Abstract. We propose a new anomaly detection system to defend
against semantic attacks on the command and control communication
in safety-critical railway signalling networks. To this end, we train arti-
ficial neural network on the communication of signal boxes connected to
their signals, points, and train detection system. We show that it is pos-
sible to predict the next command with knowledge of only few previously
transmitted datagrams. We optimize the parameters of the artificial neu-
ral network, determine the optimal number of previous datagrams, and
show that our approach is viable in railway stations of various size. Using
the artificial neural network, we construct an anomaly detection system
to classify each observed datagram to raise an alert in case of deviant
behaviour. We further optimize the anomaly detection’s threshold and
show that our classifier is able to operate with a false positive rate of
0.03 and a false negative rate of 0.04.

Keywords: Anomaly detection · Artificial neural network · Artificial
intelligence · Critical infrastructure protection · Cybersecurity ·
Railway signalling · Safety and security co-engineering · Semantic
attack

1 Introduction

Railway signalling systems, like many industrial control systems (ICSs), increas-
ingly leverage commercial off-the-shelf (COTS) hardware, shared communica-
tion networks and open protocols in order to exploit the benefits of standardized
products. At the same time, this transformation exposes railway signalling to
a range of new security threats [1,9–12] because standard products lower the
threshold for attacks, as readily available attack tools can be applied to railway
networks and known vulnerabilities can be exploited. Physical protection of the
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railway signalling infrastructure is virtually impossible due to its spatial exten-
sion along the railway tracks. This provides a large attack surface for adversaries
with little chance of being caught and sufficient time to perform attacks on sig-
nalling devices and networks with serious consequences such as train collisions
and derailments.

Fig. 1. Overview of a railway signalling network and the anomaly detection system

Securing safety-critical signalling infrastructure is a difficult task because
security measures must not interfere with the safety functionality mandatory in
railway transportation. Interference could, for example, result from a security
application introducing delay in safety-related communication, such that safety
components are unable to meet response time requirements and subsequently
violate the system’s fail-safe property. Another cause of friction between railway
safety and security is the difference in the duration of the system lifecycle. For
safety, a system is subject to a long lasting certification process and is assumed
safe forever. In contrast, for security, new vulnerabilities and attacks become
public permanently such that systems are required to be updated and patched
frequently.

We propose an anomaly detection system that does not interfere with safety
communication because it is sufficient to monitor the safety datagram trans-
mission to be able to classify it. Our system can be integrated in existing rail-
way signalling networks and be trained on traces of their command and control
communication. Anomaly detection systems for semantic attacks have been pro-
posed for other critical infrastructures (CIs) as well [3,5,7]. However, they are
not immediately applicable to railway transportation because semantic attacks
rely on domain knowledge that cannot be transferred easily. We investigate the
capabilities of artificial neural networks (ANNs) for the use as an anomaly detec-
tion system in railway signalling. Our hypothesis is that the commands in a
modern, computer-based railway signalling system can be predicted with the
help of an ANN that is presented with a short trace of recently observed com-
mands. We run experiments for the parameters of an ANN on three datasets
of datagrams containing the command and control network traffic of three rail-
way stations. In particular, we test the effect of the number of recently observed
commands presented to the ANN on the accuracy of the prediction. Also, we
experiment with different layer arrangements. After optimizing the parameters
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and training models, we construct an anomaly detection system for railway sig-
nalling networks. The anomaly detection system can be embedded in a variety
of countermeasures of a defence in depth concept that defends safety-critical
railway signalling against cyberattacks. Such a security architecture is proposed
by Heinrich et al. [6].

Figure 1 shows an overview of a railway signalling network where our pro-
posed anomaly detection system is employed. A signal box uses an Ethernet-
based communication network to send command and control datagrams to its
associated field elements (FEs) depicted as light signals and points in the figure.
The anomaly detection is an additional network component that is able to
observe all network communication, e.g., using a monitoring port of the net-
work’s central router. It comprises a preprocessor to prepare the observed com-
mands for the ANN. As we use the ANN to predict the next observed command
and control datagram, a classifier is appended to the ANN’s output that com-
pares the prediction to the observed datagram and raises an alert in case of a
deviation. The alert can be forwarded for further actions to a monitoring sys-
tem such as a security information and event management (SIEM) system that
is located e.g., in a security operations center (SOC) responsible to supervise
railway signalling.

We aim to defend against an attacker performing semantic attacks on the
command and control layer of railway signalling with the goal to provoke a
train derailment or collision. This could be an attacker who gained access to the
signal box and issues malicious commands to the infrastructure on its behalf.
Instead of overcoming the physical protection of the building where the signal
box is located, the attacker can as well compromise the insufficiently protected
signalling network to inject malicious commands to the FEs. The commands on
their own issued by the attacker appear to be licit, but issued at the wrong time
they can be harmful. A countermeasure against semantic attacks is required
to take the context of previous commands into account. However, we assume
that our attacker can not compromise an FE itself. Protection against attacks
on the FEs requires physical barriers, hardware tamper resistance, and secure
storage [6], which are not in the scope of this paper. Due to the utilization of
COTS hard- and software and the increasingly interconnected fashion of ICSs,
the physical presence of the attacker is no longer required to execute semantic
attacks. Tampering with railway operation is possible from remote locations and
is not limited to a single railway station as it can be scaled to a multitude of
stations via the communication network. Similarly, it is possible that a malware
specifically crafted for railway signalling infects the communication networks to
manipulate the FEs in the described way. Stuxnet is the infamous proof that
such attacks have already been carried out in the past. A well targeted attack of
this magnitude could have a serious impact on railway transportation and thus
the society.
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2 Related Work

To the best of our knowledge, there is no work investigating anomaly detection
in railway signalling networks. There are a few works that utilize the semantics
of the monitored network to construct and intrusion or anomaly detection sys-
tem for other CIs. ANNs have been employed for network anomaly detection
several times, but our application to railway signalling and the preprocessor and
classifier to facilitate the integration of an ANN are novel in the literature.

Caselli et al. [3] describe an intrusion detection system (IDS) that defends
against sequence attacks on the command and control communication of a CI.
Sequence attacks are a specific type of semantic attack that concern the mis-
placement of system operation events that are licit if considered individually.
We investigate sequence attacks on the CI of railway signalling in this paper.

Jin et al. [7] employ the semantics of the controlled process to infer anomaly
detection rules similar to the idea behind our work that the inherent logic
(semantics) of railway operation can be learned by an ANN and further utilized
for anomaly detection. The work of Jin et al. is based on electricity networks,
where they developed invariants to verify across defined locations of the net-
work. The Linear Invariant Checker and Bus-zero-sum Checker are derived from
physical laws that are always valid in an electrical grid.

Carcano et al. [2] study intrusion detection in supervisory control and data
acquisition (SCADA) systems that have been subject to a safety analysis process
such that possible critical states of the system are known. They model the critical
states and define a metric for the IDS to calculate the distance of the currently
observed state to any critical state and subsequently raise an alert if the system
assumes a critical state. Our ANN learns a model of the system’s normal states
and determines with the classifier whether the observed action transforms the
system into a state outside the model and thus a critical state.

Debar et al. [4] use a trace of Unix commands to model the user’s behaviour
and predict the next command with the help of an ANN. In combination with
an expert system, they construct an IDS to detect break-ins into the supervised
computer system.

Heinrich et al. [6] propose an architecture to embed a variety of security
measures into safety-critical railway signalling to build defence in depth and
describe the environment in which our anomaly detection system is supposed to
work in more detail.

The insufficient cybersecurity protection of railway transportation is also
discussed by Valdivia et al. [12] as well as the coexistence of safety and security
in the domain. They demand a network IDS that does not interfere with any
safety functionality. We present an anomaly detection system that fulfils this
requirement.

Kwon et al. [8] provide a survey of deep learning-based network anomaly
detection. They provide a taxonomy of anomaly-based IDS that includes many
techniques but focuses on ANNs and discusses types of ANN that have been
studied for network anomaly detection.
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3 Building and Training the ANN

We explain how we build and configure an ANN to predict the next issued com-
mand based on the recently observed commands. We use three realistic datasets
of network communication that we preprocess to be able to feed the commands
into an ANN. Equivalent preprocessing of the supervised network is required for
a real-world application of our anomaly detection. Then, we test different ANN
models and optimize their parameters on the datasets.

Table 1. Overview of datasets

Station 1 Station 2 Station 3

Number of datagrams 178 346 605 966 810 191

Number of FEs (|i|) 21 70 184

|s| (FE state) 11 11 11

|d| = |i|+ |s| (datagram) 21 + 11 = 32 70 + 11 = 81 184 + 11 = 195

3.1 Dataset

To train and evaluate our ANNs, we use three datasets gathered over a period
of three years in TU Darmstadt’s signalling lab1. The lab simulates real-world
railway operation with tracks, signals, points, and trains in scale 1:87 and is used
among other things to qualify traffic controllers of a German railway operator.
We summarize signals, points and train detection systems (TDSs) under the
term field element (FE). Signal boxes, FEs, and their operation are accurately
simulated in the signalling lab, including the network traffic and datagrams.
Hence, our datasets contain realistic traffic between the signal boxes and their
FEs. Each dataset contains datagrams from one railway station comprised of
one signal box that are pairwise independent with respect to railway signalling.
Table 1 shows the size of the datasets (number of datagrams) and the size of
the stations (number of FEs), which corresponds to the complexity of its track
topology.

Our dataset contains three types of FEs: light signals, points and TDSs all
of which are identified by their names. The latter monitor the vacancy of track
sections. Each datagram consists of an FE identifier (its name) and the successive
state the FE is set to. A datagram is sent via the signalling network only if a state
of an FE changes. To ensure safe train movement through the infrastructure, the
signal box receives reports on the vacancy of track sections from the TDSs and
sends commands to the points and light signals according to the desired route of
the train. We use the first 80 % of our dataset as training set and the remaining
20 % as test set. The order of the datagrams in the datasets matters because
it inherently represents the state of the station’s FEs at that time. Therefore,
randomly sampling datagrams from the dataset for training and test set is not
possible as it would not maintain the inherent order.
1 http://www.eisenbahnbetriebsfeld.de/.

http://www.eisenbahnbetriebsfeld.de/
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3.2 Preprocessing Datagrams

We model each datagram d as a pair of vectors d = (i, s) containing the FE’s
identifier and state. We use the notation |v| to denote the length of vector v. To
feed the vectors to the ANN, we use one-hot encoding. For Station 1, vector i
encoding the identifier is a 21 bit vector as Station 1 has 21 FEs. The vector
is filled with 0s and exactly one value is set to 1 to encode the datagram’s FE
identifier. For Station 2, the vector has length 70 and for Station 3, it has length
184. To one-hot encode the state of the considered FE, 11 bit are sufficient.
Points and TDSs assume two states each: left or right and clear or occupied
respectively. For the various clear and stop states of the signals, we need 9 more
bits in the state vector, resulting in a total of 11. Hence, we use vectors of length
32, 81 and 195 and thus the same number of neurons on the input and output
layer to encode each datagram. The lengths |i|, |s|, and |d| corresponding to the
dataset are summarized in Table 1.

Fig. 2. ANN architecture

3.3 ANN Architecture

As architecture for our ANN, we use four fully connected (dense) layers: one
input layer, two hidden layers and an output layer, as sketched in Fig. 2. The
amount of neurons in the input layer is determined by the size of the encoded
datagram |d| and the number of past datagrams N presented to the ANN.
Figure 2 depicts the input vector on the left, split in one-hot encoded identifier
and state with N datagram vectors. The encoded identifier is shown with a
grey background, the state with a white. The vectors of the N datagrams are
flattened in the preprocessing to form a large vector with length N ∗ (|i| + |s|)
containing all values concatenated. We perform experiments with different types
and sizes of layers. A summary is given in Table 2. Model A utilizes a constant
size of hidden layers, independent from the input or output layers, and thus
independent from the station’s size that we train the model on. In Model B, the
size of the first hidden layer depends on the size of the input layer, while the
size of the second hidden layer depends on the size of the output layer. We have
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performed experiments with long short-term memory (LSTM) cells as well. We
use |d| LSTM units and N time steps in Model C and choose to not use a second
hidden layer.

3.4 Determining Hyper-Parameters

With a few pilot experiments, we determine suitable values for the batch size
and number of epochs in the training phase. For the batch size, that determines
how many samples are presented to the ANN before the weights are adjusted,
we decide that a value of 512 suits our purpose as a trade-off between training
duration and accuracy. The number of epochs determines how many times the
entire dataset is presented to the ANN for training. For our further tests we use
10 training epochs as we can not observe any significant improvement beyond
10 rounds. For the input and dense hidden layers we use the ReLU function as
activation. Due to the one-hot encoding, we pass the output layer’s activation
through a sigmoid function that translates the activation to the interval [0, 1].

Table 2. ANN layer types and sizes

Layer Model A Model B Model C

Type Size Type Size Type Size

Input layer Dense N · |d| Dense N · |d| Dense |d|
Hidden layer Dense 128 Dense 2N · |d| LSTM (N, |d|)
Hidden layer Dense 128 Dense 2 |d| –

Output layer Dense |d| Dense |d| Dense |d|

Table 3. Optimal length of history (N) and accuracy for each model and dataset

Model A Model B Model C

Station 1 18 (98.78%) 14 (98.84%) 3 (97.57%)

Station 2 14 (99.13%) 9 (99.18%) 8 (98.90%)

Station 3 12 (99.59%) 7 (99.61%) 9 (99.53%)

3.5 Optimizing Specific Parameters

The hypothesis of this paper is that a small number of previously observed data-
grams (N) in the signalling network is sufficient to predict the next command.
To validate the hypothesis, we train our models on the datasets starting from
N = 1 and increase N by 1 until we find a maximum in the accuracy on the test
set. Table 3 shows for each dataset and each model which value of N achieved
the best accuracy on the test set.
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Figure 3 depicts accuracy and loss on the training and test sets. We present
Station 2 with Model B as an example, while finding the optimal parameter N .
The learning curve for the other datasets and models look similar and their
results are shown in Table 3. The measured accuracy is presented as the mean of
8 trainings with the same parameters to cope with the indeterminism of training
an ANN. Thus, we print the standard deviation in Fig. 3 as well. However, in
most cases it is so small that it collapses with the graph. The maximum accuracy
appears at N = 9 and the minimum loss at N = 7. Both points are marked in
the figure.

Fig. 3. Accuracy and loss while optimizing N for Station 2 with Model B

Table 4. Mean training duration for N = 10 and the optimal N shown in Table 3

Model A Model B Model C

N = 10 N = opt N = 10 N = opt N = 10 N = opt

Station 1 22.4 s 29.9 s 36.0 s 51.5 s 67.4 s 30.6 s

Station 2 125.9 s 145.2 s 387.0 s 355.4 s 465.1 s 387.1 s

Station 3 284.6 s 321.9 s 2845.5 s 1437.5 s 1366.1 s 1221.0 s

Table 4 shows the mean training time including the preprocessing and eval-
uation on the test set for our datasets and models. The duration increases in
proportion to N and dataset size. We use TensorFlow2 to perform the experi-
ments on eight Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processors running

2 https://www.tensorflow.org/.

https://www.tensorflow.org/
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Debian 9. 30 GB of memory are sufficient to train the largest model. We now
have determined the parameters to operate our ANN with and we have shown
that our hypothesis is valid that a small number of datagrams are sufficient to
predict the next with adequate accuracy.

4 Constructing an Anomaly Detection Classifier

Due to the lack of anomaly examples (attacks) and a labelled dataset we can
not directly train a classifier to distinguish anomalies. This would require a
dataset with approximately the same amount of normal and anomalous traces,
otherwise the classifier would be strongly biased towards the larger group of
examples (normal traces in our case). Thus, we construct a classifier for anomaly
detection out of the ANN’s prediction of the next datagram. We predict the next
transmitted datagram based on the trace of N previously observed datagrams
and compare it to the actually observed datagram. The prediction is a |d|-
dimensional vector ŷ = (̂ı, ŝ) of values in [0, 1] describing the ANN’s estimation
of the next datagram’s identifier and state. The closer one value in ŷ is to 1, the
more likely the ANN estimates the respective entry in the observed datagram
y to be 1. Once we observe the next datagram y = (i, s) in the signalling
network, we split it into FE identifier i and state s parts. We compare the
observed datagram (y) to our prediction (ŷ) by applying one of the two following
comparators:

Activation: We check whether the observed identifier was predicted with an
output value (neuron activation) greater than a defined threshold. As the
observed identifier is one-hot encoded, the desired activation value is the dot
product of the prediction vector and observed vector: i · ı̂.

Rank: We sort the predictions in ı̂ by their value and apply the same order
to i. Then we check whether the observed identifier has a rank less than or
equal to a threshold (e.g., whether it is in the top 3).

To merge identifier and state into a combined classifier, we follow the decision
tree depicted in Fig. 4. First, we compare the observed datagram’s identifier i
with the prediction ı̂ as explained above (cmp(i, ı̂)). If the prediction is below
the identifier threshold ti, we classify the observed datagram as an anomaly. If
the prediction is above or equal to ti, we proceed to compare the state s of the
observed datagram with the prediction ŝ (cmp(s, ŝ)). If the prediction is below

anomaly
cmp(i, ı̂) < ti

anomaly
cmp(s, ŝ) < ts

normal
cmp(s, ŝ)

≥ ts

cmp(i, ı̂) ≥ ti

Fig. 4. Decision tree visualizing the combined classifier
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the state threshold ts, we classify the observed datagram as an anomaly. Only
if the datagram passes both thresholds, we accept it as normal. The thresholds
for the rank comparator work analogously with the rank less than or equal to
the threshold classifying as normal and otherwise as anomaly. We introduce the
rank as a comparator as it offers the advantage of being independent from the
absolute output of the ANN. It is possible that for some benign predictions, all
activations are below the absolute activation threshold while the rank threshold
accepts the highest (most likely) predictions even if their absolute value is low.

5 Evaluation

To evaluate our model and classifier, we determine the false positive rate (FPR)
and false negative rate (FNR) dependent on a threshold for the prediction’s
activation and rank. We first explain this for identifier and state independently.
Subsequently, we use the combined classifier and evaluate the combined FPR
and FNR as well. In our terminology, a true positive is an anomalous, mali-
cious datagram and a true negative correspondingly a normal, benign datagram.
Accordingly, a false positive is a benign datagram that is falsely considered to
be an anomaly. Vice versa, a false negative is a malicious datagram that is not
detected as anomaly. Also, we need to demonstrate that our classifier is indeed
capable of distinguishing benign from malicious datagrams by showing that nor-
mal datagrams are above the thresholds and anomalies are below. The FPR can
easily be determined from the test data of our dataset by plotting the activation
of the correct output neuron (i · ı̂ and s · ŝ) as well as its rank among all neurons
respectively. The FNR however, we cannot determine from our dataset because
it does not contain anomalies to test against. Hence, we manually create attack
vectors by randomly selecting a trace of l > N consecutive datagrams from our
test set. With expert knowledge, we craft a malicious datagram l+1 that would
set the railway infrastructure to a hazardous state if issued after the selected
sequence and therefore must be classified as anomaly. The concrete malicious
datagram depends on the current infrastructure configuration represented by
the trace of l datagrams. Generally, attack vectors split into three categories:
First, the attacker tries to switch a point a train is about to run over or is
already running over it to cause a derailment or collision. Second, the attacker
swaps the state of a TDS to make trains appear or disappear on the infrastruc-
ture, which increases the chance that another train is routed into an already
occupied section causing a collision. Third, the attacker sets a signal to clear
that protects an occupied track section such that an approaching train collides
with the train occupying the section behind the signal. The experts verify that
executing the malicious datagram after the set of l datagrams would lead to
a train derailing or a collision. We ensure that each attack category receives
the same fraction (1/3) of malicious datagrams in our attack vector set which
contains 99 attack vectors for each station. Subsequently, we calculate the FNR
by presenting the last N datagrams of each attack vector to the ANN and the
classifier. The fraction of undetected attack vectors yields the FNR. Ideally, we
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would expect the malicious datagrams to receive an activation close to 0 because
they should be very unlikely to appear next from what the ANN learned in the
training phase.

Figure 5 shows the FPR and FNR for FE identifier and FE state indepen-
dently. In fact, the state is dependent on the identifier, which we evaluate in
Sect. 5.1. As an example for comparing the identifiers (i, ı̂) by activation, we
chose a threshold of 0.2, such that every datagram whose identifier is predicted
with an activation greater than 0.2 is classified as normal and classified as
anomaly if below 0.2. In Fig. 5a, we see that this threshold would perform with
a FPR of 0.167 (thick black line) and a FNR of 0.010 (thick dashed grey line).
The thin lines depict the rates for comparing the state (s, ŝ) of the FE.

Figure 5b shows the rates for the rank comparator of the output neuron. As
an example for comparing the identifiers (i, ı̂) by rank, we chose to accept all
commands whose prediction are at least in the top 10. In Fig. 5b, we see that
this threshold would perform with a FPR of 0.030 (thick black line) and a FNR
of 0.152 (thick dashed grey line). The rates of the FE’s state (thin lines) reach
0 and 1 respectively for smaller ranks than the rates for the identifier because
there are fewer states to rank than identifiers (|ŝ| < |̂ı|). For both figures, we
use the results of Station 2 and Model B with N = 9.

Fig. 5. FPR and FNR based on the correct output neuron’s activation and rank

5.1 Evaluating the Combined Classifier

To receive meaningful evaluation data, we need to calculate FNRs and FPRs
on the combined classifier for the identifier and state. It is important to note
that the two thresholds are not necessarily set to the same value. This becomes
apparent in the case of ranks as the identifier threshold can be in a range from 1
to |i| (70 in this evaluation of Station 2) while the state threshold can only range
from 1 to |s| (11). Hence, the FPR and FNR are functions dependent on two
dimensions ti and ts. We sample the function for a predefined set of thresholds
on our datasets to find a suitable pair t = (ti, ts) to operate the classifier on. The
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Fig. 6. Combined FPR and FNR for (a) activation and (b) rank

resulting heatmap for the neuron’s activation is depicted in Fig. 6a. The values
in the squares depict the achieved FPR or FNR respectively for ti on the x-axis
and ts on the y-axis. The darker the square, the higher the rate. For example,
an activation threshold of t = (0.005, 0.001) yields a FPR of 0.039 costing a
FNR of 0.071. If the prediction’s rank is used for the classifier, a FPR of 0.01 at
t = (25, 6) corresponds to a high FNR of 0.323 as shown in Fig. 6b.

Especially Fig. 6b shows that most of the classification depends on the FE’s
identifier as there is more improvement of the rates in the x-axis than in the
y-axis. We observe that fewer false positives appear with smaller thresholds and
fewer false negatives appear with higher thresholds independent from whether
the activation or the rank is used as comparator. The optimal choice of ti and ts,
however, depends on the trade-off between FNR and FPR hence the importance
of a low FNR versus a low FPR. In general, a lower FPR should be preferred
over a lower FNR as false positives raise an alert where there is actually no
attack on the system. Too many false positives reduce the confidence of the
anomaly detection’s users in the system and occupies the resources to process
such an alert. On the contrary, missing a few actual attacks (false negatives)
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can be compensated because it is very likely that an attacker issues multiple
malicious commands of which a single one classified as anomaly is sufficient to
draw attention to the attacked system.

A reasonably balanced point between FPR and FNR in our opinion is ti =
0.001 and ts = 0.01 with a FPR of 0.027 and a FNR of 0.101. For the rank, such
point is ti = 10 and ts = 5 with a FPR of 0.03 and a FNR of 0.04. Models A
and C operate with slightly worse performance as it is to be expected from the
proportion of accuracy in Table 3. From our experience, we conclude that the
classifier based on the rank produces better results than the activation-based
classifier.

6 Discussion

From the preprocessing we apply, it is already apparent that an ANN needs to
be trained and optimized individually for each railway station. This includes in
particular the length of history (N) and the thresholds. Not only is the ANN
dependent on the number of FEs. But also the inter-dependencies of FEs learned
by the ANN are significantly different between two stations such that a trained
model is not transferable to another railway station. We indeed presume that a
certain amount of changes to a station’s track topology (e.g., adding or removing
points) would require a re-training as well, including the collection of a new
dataset to train on.

To train and test our ANN, we utilize datasets comprising several hundred
thousand datagrams (confer Table 1) gathered over the course of three years.
Fortunately, our preliminary experiments have shown that already a fraction of
about 10 % of our datasets’ size produces good results at the cost of one or two
basis points of accuracy. Consequently, it is possible to reduce the dataset accu-
mulation time. On top of that, real-world railway stations operate almost 24 h a
day on 7 days per week, which is not the case in TU Darmstadt’s signalling lab.
Hence, sufficient training data for a real-world railway station can be collected
significantly faster.

While data collection and model training can consume a lot of time and
resources (see Table 4), the actual prediction can be performed quickly and in
advance before the next datagram is observed. The anomaly detection holds the
ANN model and a queue of N last datagrams. Before the next datagram appears,
the prediction can be performed on the queue such that only the comparison
needs to take place after a datagram arrives. This ensures that the anomaly
detection can react in time to each incoming datagram. After the classification,
the new datagram is pushed into the queue and the next prediction can already
be performed such that the anomaly detection is prepared for the arrival of
another datagram. In terms of computational resources, the CPU and memory
intensive training (see Sect. 3.5) can be performed offline and is anyway required
only once until the railway infrastructure changes. Our largest model (Model B
for Station 3) requires as few as 18 MB of storage. Once the model is loaded
into memory, a commercially available machine can perform the classification in
a fraction of a second.
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The anomaly detection mitigates application level denial-of-service (DoS)
attacks that try to simulate occupied track segments, because random track sec-
tions becoming occupied are not contained in the training set and thus are out-
side the anomaly detection’s perception of normality. Accordingly, the attacker
cannot occupy some or all sections of her choice at once. The attacker’s strategy
to remain undetected by the anomaly detection is to follow correct train opera-
tion, by setting the points correctly, setting a signal to clear and then occupying
one track section after the other as a real train would do. This would not raise
an alert as it corresponds to the expected behaviour but would as well not be
invisible to traffic controllers.

Our anomaly detection system can be attached to the communication net-
work of a railway station as a dedicated machine as indicated by Fig. 1. It requires
network monitoring capabilities to observe the transmitted commands. With this
layout and alerts being processed by staff in a SOC, the system itself does not
interfere with railway’s safety functionality as the actual decision for intervention
is transferred to a human. It is possible to allow the anomaly detection system
to directly suppress commands that it classifies as anomaly. However, this kind
of intervention requires a detailed study of safety interference.

7 Conclusion

We have demonstrated a neural network-based anomaly detection system that
can be installed without interference in railway signal boxes. By performing
our experiments on railway stations of different sizes, we have shown that our
method is scalable to large networks. With only 14, 9, or 7 datagrams of history,
we have shown that it is possible to predict the next action in a railway signalling
network with an accuracy of 98.84 %, 99.18 %, and 99.61 %. We demonstrated
a classifier that takes the prediction and the actual observed datagram and
determines whether it is an anomaly or not. We have shown that the classifier
based on the rank of the ANN’s prediction can operate with a FPR of 0.03 and
a FNR of 0.04 and produces better results than the classifier solely based on
the activation. The concrete trade-off between false positives and false negatives
however should be adjusted by domain experts for each station individually.
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Abstract. When Cyber-Physical Systems (CPS) work incorrectly we
would like to know the reason for this behavior. Experts inspect log
files of CPS to get an idea about what went wrong. The large amount
of information, which is stored in those log files, and the complexity of
CPS pose a challenge to experts that try to manually detect anomalies
in the system’s behavior. We propose to automate anomaly detection in
CPS log files by applying a clustering approach to find time spans, in
which the regarded system behaves abnormal. With our approach, we
aim to significantly reduce the time and effort that is needed by experts
to discover anomalies in the log files without having to build a model of
the system first. The results from our evaluation show that our generic
approach can effectively find anomalies for different types of CPS.

Keywords: Anomaly detection · CPS · Time series data · Clustering ·
Unsupervised machine learning · Log analysis

1 Introduction

In Cyber-Physical Systems (CPS), the physical components of the systems are
connected, controlled and monitored by software components. The sensors of the
systems are permanently collecting data. On the one hand, this data is stored in
log files and, on the other hand, it is processed by software components. We can
find CPS in a broad range of application domains. Examples from different fields
are unmanned aerial vehicles (UAVs), autonomous cars or smart grids [12].

In the following, we will take a look at a single UAV as an example for CPS.
The UAV has the mission to fly to a specified waypoint to deliver a package.
When the UAV reaches the waypoint, the package is damaged. As the company
that wanted to deliver an intact package, we are interested in the reason for the
damage of the package. A UAV normally logs at each time stamp more than
100 parameters including sensor data, messages and status of components. A
flight of ten minutes yields a log file with 6, 000 time stamps if the data is logged
every 100 ms. If each of the 100 parameters is logged at each time stamp, the
resulting log file contains 600, 000 parameter values. An expert that tries to find
the reason for the damage of the package will take a look at the behavior of
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 179–194, 2020.
https://doi.org/10.1007/978-3-030-54549-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54549-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-54549-9_12


180 T. Schmidt et al.

the UAV during its flight by inspecting the log file. Throughout this process, the
expert will look for anomalies in the behavior of the UAV. These anomalies in the
system’s behavior depict undesired behavior of the system, which can result, for
example, from failures of the system or attacks on the system. When searching
the log file for an anomaly, the expert might have to take a look at all 600,000
parameter values in the worst case. In the best case for anomaly detection,
the UAV crashes during its flight, hinting that the underlying fault is probably
located at the end of the log file. However, this is not necessarily the case. A
short anomaly might occur that needs some time to manifest and to result in a
crash. Then, taking a look at only the last parameter values will not reveal the
anomaly and the expert still needs to inspect up to 600,000 parameter values.
Even if the anomaly is located at the end of the log file, there are additional
challenges that the expert has to handle. These are described in the following:
The system’s behavior might look normal when the expert only regards a single
parameter each time. This means that the expert additionally needs to take
the interaction of different parameters into account to detect abnormal behavior
of the system. Also, the particular set of interactions that the expert needs to
review to detect an anomaly is not known beforehand.

Therefore, we propose to automate the anomaly detection in CPS log files
by using a clustering approach. With our approach, we reduce the log files of a
CPS to the time spans, in which the system behaves abnormal. In this way, the
expert does not need to review the complete log files. This saves him or her a
large amount of time and effort when trying to discover an anomaly.

Previous approaches of anomaly detection in CPS log files [5,16] work with
a model that describes the normal behavior of the system. This means that
a complete and fine-tuned model of the system is needed to effectively detect
anomalies in the log files of this system. If we want to apply these approaches
to detect anomalies for different systems, we need to create a model for each of
those systems. Our proposed approach for detecting anomalies is not dependent
on a model of the system. When inspecting CPS log files, we aim to find time
spans, in which the system does not behave as in the other parts of the log files.
In this way, we create a generic approach, which can be applied to log files of any
type of CPS without having to train or learn a model of the system beforehand.

The contribution of this paper is the following: We provide a generic
approach to detect time spans, in which a CPS behaves abnormal. For this
purpose, we apply clustering on the multidimensional time series data from the
log files of the system. We evaluate our proposed anomaly detection approach
with two CPS data sets, which include failures and attacks as abnormal behavior.
One of these data sets includes log files from a UAV, whereas the other one
contains data from an industrial water plant.

An overview of our proposed process for detecting anomalies in CPS log files
is presented in Sect. 2. We then describe our clustering approach in detail in
Sect. 3. Subsequently, Sect. 4 demonstrates the results of our experiments on two
data sets. In Sect. 5 we discuss related work in the area of automated anomaly
detection for CPS. Finally, we conclude our work in Sect. 6.
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2 Anomaly Detection

When a CPS works incorrectly, we would like to find the reason for this behavior.
Abnormal behavior can, for example, be caused by a failure within the system
or by an attack launched on the system. When investigating the reason for the
incorrect behavior, experts take a look at the log files of the system. In those log
files, the parameter values of the system such as sensor data, messages or status
of components are logged over the execution time of the system.

As mentioned earlier, there exist two main challenges for manually detecting
anomalies in CPS log files: (i) the large amount of information included in the
log files and (ii) the general complexity of CPS. Due to these challenges, we
propose an automated approach to reduce the amount of information that needs
to be inspected by the expert and enable easier detection of anomalies in CPS
log files. Figure 1 depicts an overview of our proposed approach.

Fig. 1. Automated anomaly detection in CPS log files.

CPS log files (1) are the input to our approach. These log files include the
logged parameter values over the execution time of the CPS. Additionally, they
contain the anomaly that we are interested in discovering.

In this paper, we focus on the automated anomaly detection approach (3),
which takes the CPS log files as input. We divide the log files into a number
of time spans and compare the behavior of the parameters in these time spans.
Therefore, we need as a second input the size of these time spans (2), which we
call “windows”. We will discuss different options for estimating this variable in
this paper. Additionally, we would like to inspect methods for estimating a good
window size in future work. With our clustering approach, we aim to detect time
spans in the log files, in which the regarded system behaves abnormal (4).

In the next step, an expert can use the discovered abnormal time spans of the
log files to interpret the abnormal behavior of the system (5). To detect anomalies
in the provided time spans of the log files, additional expert knowledge (6) is
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necessary. To find an anomaly in the provided time spans, the expert will need
to have domain knowledge and a mental model of the anomaly to discover. This
means that the expert has to know how the parameter values of the regarded
system normally behave to detect anomalies.

As a result of this process, the expert might be able to detect the anomaly (7)
in a reduced amount of time and effort. Our clustering approach provides time
spans, in which the system does not behave normally. Thus, it is possible that
also rare behaviors are represented in these time spans. The expert will not be
able to detect an anomaly if only rare behavior is included in the provided time
spans. If this is the case, we propose to change the window size and run the
automated anomaly detection again.

3 Detecting Anomalies with Time Series Clustering

In this chapter, we explain the technical details of our method. In Fig. 2, we
provide an overview of the methodology of our proposed approach for automated
anomaly detection in CPS log files. With our approach, we try to find those
time spans in which the system behaves abnormal. We expect these abnormal
behaviors to be different from the normal behavior of the system. Additionally,
we anticipate the abnormal behavior to only appear rarely. The idea is, therefore,
to cluster the data and then look at the small clusters to detect anomalies in the
system’s behavior.

CPS have a list of parameters P = p1, p2, ..., pn, ..., pN that are logged
over time. A CPS log file L = p1(ts0), p2(ts0), ..., p1(ts1), ..., pN (tsT ) consists
of parameter values pn(tst) for each recorded time stamp tst with t ∈ [0, T ]. The
parameter value pn(tst) is logged at time stamp t and represents the parameter
with index n in the list of parameters P . When trying to find anomalies in the
log file of CPS, we might encounter the problem of log-heterogeneity [4]. Dif-
ferent components of CPS might generate differently formatted log files. In this
case, we need to pre-process these log files to bring them into one format L. [4]
presents various techniques that can be used for this pre-processing step. We will
divide the log files into smaller windows wj for clustering with j ∈ [1, J ]. Each
window has the same size windowSize, which has to be specified beforehand by
the expert. More details about this step can be found in the next subsection. The
result of our proposed approach will be a list of windows, in which the system
behaves abnormal. We use the variable AW = aw1, ..., awF to represent this list
of abnormal windows.

3.1 Window Slicing

When we use a clustering approach to detect anomalies in CPS log files, we need
to first divide the log files into subsequent time spans. Then, we can compare
the behavior of the parameters P in these time spans. We cut the time series
data of the log files L1, ..., LL into consecutive windows wj . Each window has
a size of windowSize and the first window of each log file starts at ts0. The
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Fig. 2. Methodological overview of our proposed approach.

variable windowSize has to be specified by the expert beforehand. One way of
estimating this variable is to take the knowledge about the system’s behavior and
its previously occurred anomalies into account. After detecting several anomalies
in the system, we expect the expert to be able to estimate a good windowSize for
each of these anomalies. Another approach is to execute the automated anomaly
detection several times with different window sizes to find a good estimate. In
our experiments, we discovered that a clustering with a low inertia value leads
to good results for detecting anomalies, but not necessarily to the best results.
Receiving good results for low inertia values seems intuitive since the inertia
value represents the internal cohesion of the clusters. A low inertia value stands
for a high internal cohesion within the clusters. An optimization technique can be
used to find a window size, with which the lowest inertia values can be achieved.
We believe that optimizing for a low inertia value will not be sufficient to find
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Fig. 3. If the log file L is only cut into the three purple windows w1, w2 and w3 the
abnormal behavior marked in bold might be missed. Therefore, we propose to instead
use the five orange and green windows w1, w2, w3, w4 and w5 to represent the log file.
(Color figure online)

the best results for detecting anomalies though. In the future, we would like to
assess several methods and optimization criteria for estimating a good value for
the size of the windows. In this work, we will assume that the expert knows a
good estimate of windowSize.

When slicing our data into windows wj , we might run into the problem that
the anomaly is lying directly on the border of two windows. Figure 3 illustrates
this problem. In this figure, the abnormal behavior is located at the border of
the windows w1 and w2. If the abnormal behavior wraps around the border
of two windows wj and wj+1, it might not be detected since its effect on the
complete behavior of wj or wj+1 might be too small. Thus, we decided to consider
additional windows that start with an offset at time stamp ts0+(windowSize/2).
These windows have the same size as the previously regarded windows. In this
way, we can find the complete abnormal behavior in at least one window as long
as we choose windowSize large enough for the behavior to fit in.

3.2 Z-Normalization

Since we want to detect anomalies in the behavior of a system, we are not
interested in the absolute values of the parameters pn. Instead, we would like
to compare how the parameter values change throughout the log files. Essential
for us is, for example, that the UAV reduces its height by 5 m in 1 s. Whether
the UAV decreased its height starting from 20 m or 15 m is instead not relevant
for the anomaly detection. To concentrate on the structure of the time series
we apply Z-Normalization on the data from the log files as proposed in [6]. In
this way, we equalize the amplitudes and spatial differences between the time
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series. This enables the clustering algorithm to focus on the structure of the
time series. To compute the normalized data points we need to look at each
parameter pn separately. For each parameter pn we have to compute the mean
and standard deviation over all time steps tn in the log files. Then, we can
calculate the normalized data point p′

n(tst) for each data point pn(tst) by using
the computed mean and standard deviation values.

3.3 Dynamic Time Warping

To compute the distance and therefore the similarity between two or more time
series, Dynamic Time Warping (DTW) is commonly used [3,13]. With this
method, we can find equal time series even if they are distorted along the tem-
poral axis. Since we want to find equal behaviors in the log files that might be
slightly distorted, this method seems to be suited very well for our approach.

To compute the DTW distance between two windows w1 = w11 , ..., w1a and
w2 = w21 , ..., w2b , we need to calculate the cumulative distances D(w1a , w2b)
between the points of the time series.

D(w1a , w2b) = δ(w1a , w2b) + min

⎧
⎪⎨
⎪⎩

D(w1a−1 , w2b−1)
D(w1a , w2b−1)
D(w1a−1 , w2b)

⎫
⎪⎬
⎪⎭

In this function, δ represents the Euclidean distance between the single data
points w1a and w2b [3,19].

In the third step of our methodology, we compute the DTW distance of
all parameter values pn of one window to the parameter values pn of all other
windows. Our goal is to gain a single DTW distance value D(wi, wj) between two
windows wi and wj . To achieve this, we first need to calculate the DTW distance
of these two windows for each parameter: Dpn

(wi, wj) for pn ∈ P . In a next step,
we have to aggregate these single distance values of all parameters Dpn

(wi, wj) to
obtain a single DTW distance D(wi, wj) for the two windows wi and wj . We use
the sum of squares to aggregate these values. If two windows depict an identical
behavior, the resulting DTW distance between these windows D(wi, wj) will be
0. The matrix representing the DTW distances between all windows will be the
input for the clustering algorithm in a subsequent step. Using DTW to calculate
the distances between several time series enables us to work with data from
different types of CPS. Since DTW can work on time series of different length
and independent of the underlying parameters, we create a generic approach
that is not tailored to one specific system.

3.4 Principal Component Analysis

Before clustering the derived DTW distances, the dimensionality of the data
first needs to be reduced to gain decent clustering results. A Principal Com-
ponent Analysis (PCA) [1] can be used for this purpose. It generates principle
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components by combining redundant or similarly behaving features of the data.
This results in a decreased dimensionality of the data. We apply the PCA with
a retained variance of 0.95 as suggested by the literature. This means that we
only reduce the dimensionality of the data until the specified variance is met. In
this way, we can cluster data that includes a high number of parameters pn and,
thus, do not need to limit our analysis on only a few selected parameters.

3.5 K-Means Clustering

After applying the PCA, we can cluster the data and gain decent clustering
results. We decided to use the clustering algorithm K-Means, which is suitable
and often used for clustering time series data [13]. Additionally, the results from
the algorithm are easier to interpret than results from other techniques. We com-
pute the K-Means clustering for all possible number of clusters. Subsequently,
we apply the elbow method on the inertia values of the resulting clusterings
to determine the optimal number of clusters k. Instead of manually guessing
the location of the elbow, we let the Kneedle algorithm, presented in [20], find
the point of maximum curvature in the inertia values. The resulting clusters
C = c1, ..., ck represent similar behaviors of the system parameters P through-
out the log files. In the next step, we have to select those clusters from C, which
represent the abnormal behavior of the system.

3.6 Abnormal Cluster Selection

For detecting anomalies we are interested in the abnormal behavior of the system.
In this paper, we assume that our system behaves normally most of its execution
time. This means that the number of time stamps in which abnormal behavior
occurs will be small. Therefore, we expect the abnormal behavior to differ from
the normal behavior of the system and to appear only rarely. In our clustering,
this is represented by separate clusters that include only a small amount of
instances.

To determine the number of small clusters that we should regard as abnor-
mal, we suggest using the occurrence rate of the anomaly to detect. This rate
can, for example, be the failure rate of the system or the attack rate on the
system. Depending on how often the system fails or gets attacked, we should
consider a different amount of clusters as abnormal. We assume that an expert
can provide such an occurrence rate from his or her knowledge about the system.
This knowledge can include the expert’s experience with the system, a mental
model of the anomaly to detect or reports on the system’s processing.

In a first step, the list of clusters C needs to be rearranged to enable the
selection of the abnormal clusters. The list of clusters C is sorted by the number
of instances that the clusters contain. This yields a sorted list of clusters CS =
cs1, cs2, ..., csk with size(cs1) ≤ size(cs2) ≤ ... ≤ size(csk). Additionally, we
need to specify the maximum number of abnormal windows that should be
collected. This number can be computed based on the occurrence rate r of the
anomaly to detect. The maximal number of abnormal windows is the product
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of the occurrence rate r and the number of all windows. In the next step, the
selection of clusters starts from the beginning of CS to gain the smallest clusters
first. When a cluster is selected, all windows wi from this cluster are added to
the list of abnormal windows AW . Clusters are selected from the beginning of
CS until the maximum number of abnormal windows is reached. The result of
this step is the list of abnormal windows AW for the regarded log files.

4 Evaluation

In our experiments, we aim to evaluate how effectively the proposed approach can
detect abnormal time spans in CPS log files. The intended result is a reduced
amount of time and effort that needs to be invested by an expert to find an
anomaly in CPS log files. Therefore, a high recall value is important for us. The
resulting list of abnormal windows AW should include all anomalies. Otherwise,
the expert will not be able to find the anomalies in the reduced amount of
windows that we provide. If the precision values are too low, the amount of
windows that the expert needs to inspect is too large to save time and effort.
However, we believe that as long as we can save the expert time and effort
during the anomaly detection, the precision values do not need to be as high as
the recall values. This means that the list of abnormal windows AW is allowed
to contain some windows with normal behavior as long as their quantity remains
small. We use two data sets from different CPS in our experiments to emphasize
the generic applicability of our approach. Both data sets contain labels about
the included failures and attacks. In the experiments, we only use these labels to
compute precision and recall values for our proposed method. These labels are
not used by our clustering algorithm at any time.

4.1 Implementation and Experimental Setup

In our implementation, we use methods from the scikit-learn machine learning
library [18] for computing PCA and K-Means. Additionally, we use the Kneedle
algorithm from [20].

The experiments are run on a machine with an Intel Xenon E5-2687W pro-
cessor with 15 cores and 128 GB of RAM. The K-Means algorithm is run 10
times with different beginning seeds. The run with the smallest inertia value is
chosen. Our experiments take 6 s to 16 min, depending on the length of the log
files and the size of the windows.

4.2 Data Sets

ALFA Data Set. [10,11] the first data set in our experiments is the ALFA data
set, which includes log files of a fixed-wing Unmanned Aerial Vehicle (UAV). This
data set encompasses 36 log files, which describe the behavior of the UAV while
various failures occur. The log files include four different types of failures: aileron,
elevator, engine and rudder failures. For each log file L, the specific failure and
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its occurrence time are given. Our list of parameters P for this data set consists
of the main eight features of the UAV:

P = pitch, roll, yaw, velocity, position, orientation, airspeed, windestimation

This data set includes failures of different categories that vary widely in their
behavior. To yield more detailed results, we conduct our experiments separately
for each of those failure types. This allows us to explore whether or not there
are specific types for which our approach performs considerably better or worse
compared to the other types. In this way, we can understand how well the clus-
tering separates the abnormal behavior of each of those failure types from the
normal behavior of the system. To perform this category-specific analysis, we
combine all log files that contain failures of one category into one log file L.
Then, our approach is applied to this single log file L to find abnormal behaviors
that represent the failures of this specific category.

SWaT Data Set. [7] as a second data set, we use the SWaT data set collected
by the Centre for Research in Cyber Security, Singapore University of Technol-
ogy and Design (iTrust). The institute collected data from an industrial water
treatment plant and launched 36 attacks on it during execution. In our experi-
ments, we use the data that was recorded over six days in 2015 and work with a
resolution of one data point per minute. This means that we regard all parame-
ter values once per minute. The list of parameters P for this data includes the
most dominant features of the water plant. These can be found in [7], where the
authors provide an overview of the process of their test bed.

P = lit101, lit301, lit401, p101, p201, p203, p205, p301, p401, p501, p602,

fit201, fit401, ait201, ait202, aitT203, ait402, ait503, ait504, dpit301

Since we do not have further knowledge about this water plant, we do not know
what the parameters in P stand for or which effects they have on the system.
But, we are still able to apply our clustering approach to find abnormal time
spans without this further knowledge.

The data set does not provide a subdivision of the attacks into attack cat-
egories that are based on the behavior of the attack types. Therefore, we will
consider all data from this data set at the same time in our experiments. We
thus apply our clustering approach to a log file L, which includes all data from
the data set.

4.3 Experimental Results

When applying our proposed clustering approach to the log files L1, ..., LL in the
experiments, we will get a list of abnormal windows AW as a result. To evaluate
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Table 1. The characteristics of the ALFA and the SWaT data set as well as the window
size, which achieves the best values in the experiments for each category.

Data set Failure/attack category Failure/attack rate Best window size

ALFA Aileron failure 0.3365 100

ALFA Elevator failure 0.1114 109

ALFA Engine failure 0.1350 138

ALFA Rudder failure 0.1921 33

SWaT All attacks 0.1205 34

our approach, we compare the resulting abnormal windows awi ∈ AW with the
time spans that were labeled to include a failure or an attack in the data sets.

For computing precision, recall and F1 values for the evaluation of our app-
roach, we need a clear definition of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). A block in the following definitions is a
set of parameter values of subsequent time stamps from the log files. Each block
has a size of windowSize/2 and the first block starts at time stamp ts0.

– TP are blocks that include an anomaly and are correctly marked as ‘abnormal’
by our proposed approach.

– FP are blocks that contain no anomaly and are wrongly marked as ‘abnormal’
by our clustering approach.

– TN are blocks that include no anomaly and are correctly marked as ‘normal’
by our proposed approach.

– FN are blocks that contain an anomaly and are wrongly marked as ‘normal’
by our clustering approach.

As mentioned earlier, the abnormal clusters are selected depending on the
occurrence rate of the anomaly. In our experiments, this is the failure rate of
the system or attack rate on the system. Normally, an expert would provide this
occurrence rate. Since we do not know the specific systems of the used data sets,
we will instead estimate the occurrence rate of the anomalies from the included
labels. For this purpose, we divide the total number of time stamps with the
number of time stamps in which a failure or attack occurs concerning the labels.
Table 1 displays the calculated failure or attack rates for the two data sets in our
experiments.

Additionally, this table shows the window size per category which achieves
the best results in the experiments. We mentioned several methods for estimating
a good window size in Sect. 3.1. Since we are not familiar with the particular
systems of the data sets, we have to find the best window sizes differently than
experts would normally do. We decided to run our proposed clustering approach
on the log files L1, ..., LL for each category and data set with the size of the
window windowSize ∈ [10, 200]. The best window size can be determined by
looking at the resulting F1 scores. Note that this process is only possible if we
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can compute the F1 scores. The window size with the highest F1 score is the
optimal window size for finding anomalies in the regarded log files.

Table 2 presents the precision values, recall values and F1 scores computed
in our experiments. These values were calculated using the following formulas
and the aforementioned definitions of TP, FP and FN:

precision =
TP

TP + FP
recall =

TP

TP + FN
F1 = 2 ∗ 1

1
precision + 1

recall

Table 2. The results of the experiments displaying the calculated precision and recall
values as well as the F1 score for the ALFA and the SWaT data set.

Data set Failure/attack category Precision Recall F1 score

ALFA Aileron failure 0.6848 0.8889 0.7736

ALFA Elevator failure 0.8571 1.0000 0.9231

ALFA Engine failure 0.6545 0.7500 0.6990

ALFA Rudder failure 0.8209 0.9167 0.8661

SWaT All attacks 0.8669 0.7357 0.7959

We can detect aileron failures from the ALFA data set with a precision of
0.6848, a recall of 0.8889 and a resulting F1 score of 0.7736. For elevator failures,
we can achieve even better results. The precision value raises to 0.8571 and we
can identify all failures, which is presented by a recall value of 1.0. A precision of
0.6545 and a recall of 0.75 can be obtained for engine failures of the ALFA data
set. When clustering the rudder failures from the same data set, we accomplish
high precision and recall values of 0.8209 and 0.9167. The results of the SWaT
data set show that we can detect attacks with a precision value of 0.8669 and a
recall value of 0.7357. We can achieve high recall values for the SWaT data set
and all categories in the ALFA data set. This shows that our proposed approach
can detect a large amount of the included failures and attacks as abnormal
behaviors of the system. From a practical perspective, the precision values for
aileron and engine failures are high enough to save the expert time when trying to
find an anomaly even though they are not as high as in the other categories. For
elevator failures, rudder failures and all attacks in the SWaT data set, we achieve
high precision values above 80%. This shows that we can efficiently reduce the
amount of information that the expert needs to review.

In the following, we will compare the results of our experiments on the SWaT
data set with results from experiments on the same data set in the literature.
The authors of [9] present two model-based anomaly detection methods in their
paper. They compare the performance of (1) Deep Neural Networks (DNN)
and (2) one-class Support Vector Machines (SVM) on the SWaT data set. The
parameters of these two unsupervised machine learning algorithms need to be
fine-tuned to achieve good results. To train the DNN, a high amount of time and
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data is necessary. For the SVM approach the classification boundary between
normal and abnormal behavior needs to be learned beforehand. A third method
for anomaly detection on the SWaT data set is evaluated in [14] and called (3)
TABOR. The authors propose to first train a Bayesian Network (BN) to recog-
nize the normal behavior of the sensors and actuators of the system. Then, this
BN is used to distinguish between normal and abnormal behavior of this specific
system. We will focus the comparison on the number of anomalies that were
detected by each of these approaches. We were not able to compare other values
from these papers since the authors use different methods to compute TP, FP
and FN. The SWaT data set includes 36 attacks. From [9], we can obtain that
the (1) DNN-based approach detects 13 and the (2) SVM-based solution finds 20
attacks. These numbers are derived from Table 3 in [9] and not computed by our-
selves. The method (3) TABOR can discover 24 attacks in the data set, which
is displayed in Table 4 in [14]. We compare these numbers that were directly
derived from the two papers, with the performance of our approach. With our
proposed approach, we can detect 23 of the 36 attacks. This shows that we can
discover more attacks in the SWaT data set than the (1) DNN-based and (2)
SVM-based methods. Also, we detect only one attack less than the third method
called (3) TABOR. This indicates that we can effectively detect anomalies in the
SWaT data set compared to current literature. Most importantly, we can apply
our approach to log files of different CPS without the need to fine-tune a large
number of parameters or learn a model beforehand. Our evaluations, therefore,
show the generic applicability of our proposed approach and its efficiency in
comparison with other approaches from the literature.

5 Related Work

Automating anomaly detection in Cyber-Physical Systems is a broad research
field. Anomalies are either identified by working on log files of the system [5,8,
9,15] or by monitoring parameters of the system in real-time [2,17]. We decided
to develop an approach that a posteriori detects anomalies in CPS log files.

For anomaly detection in log files [8] proposes the Local Outlier Factor algo-
rithm, which statistically computes the reachability distance to the neighboring
points. In contrary to this approach, we plan to develop a method which is
per se suited to work on time series data by using Dynamic Time Warping as
our distance metric. In [15], a hierarchical clustering approach is applied to log
files to detect reoccurring failures. A representative sequence is chosen for each
cluster. The authors of [5] build a Finite State Automaton for each component
of the system from its log files to represents the normal work process of each
component. In the next step, both approaches compare new log files with the
representative sequences or Finite State Automata to detect anomalies. In these
two papers, the normal behavior and representative sequences are derived from
previously collected log files of the system. In this way, they are only able to
detect reoccurring failures and anomalies and need to build a new model for
each new system. Our approach, on the contrary, can be applied to log files of
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any CPS without having to train or learn a model beforehand. The authors of
[9] suggest to use unsupervised machine learning approaches to find anomalies
in log files from a water purification plant. In this approach, the authors do not
need to build a fine-tuned model of the system. They still need to tune different
parameters before they can start the learning phase of their machine learning
approaches though. In contrary to this, the expert only needs to set a single vari-
able in our approach. For real-time anomaly detection, [17] monitors one specific
parameter (motor temperature) and [2] defines process invariants, which have
to hold as long as the system is in a specified state. The invariants are derived
from a model of the system. We aim for detecting anomalies of different origins,
instead of focusing on only one parameter of the system as [17] suggests. Our
goal is to a-posteriori find abnormal behaviors in CPS log files. In this way, we
want to create an approach that is independent of the system itself and where
we do not need to create a fine-tuned model of our system as needed in [2].

6 Conclusion

We first outlined the challenges of manually detecting anomalies in CPS log
files. A large amount of logged parameter values, as well as the high complexity
of these systems, complicate the manual discovery of anomalies. Therefore, we
propose to automate this process by applying a clustering approach to the mul-
tidimensional time series data. The abnormal behavior is expected to occur only
rarely and to differ from the normal behavior of the system. Thus, we antici-
pate the abnormal behaviors from the log files in separate and small clusters.
For the selection of the abnormal clusters, the occurrence rate of the anomaly is
utilized. We assume that an expert can provide this occurrence rate from previ-
ously collected data and his or her knowledge of the domain and system. In our
experiments with two data sets from different types of CPS, we could show that
our generic approach can effectively detect anomalies in the log files. Naturally,
there exists a trade-off between the analytical run-time of our proposed approach
and the size of the log files. If we encounter the problem of not possessing enough
computational power, we have to reduce the size of the log files. This can, for
example, be achieved by reducing the number of data points per time unit or by
having an expert predict which parts of the log files should be considered in the
analysis.

There is no need to create a fine-tuned model of the regarded system in our
approach. The only variable that needs to be set is the size of the windows, in
which the data is cut. We expect that the expert will be able to set this variable
properly after discovering several anomalies in a system. Another option is the
use of optimization techniques to find a good estimate of the window size. In this
paper, we assume that the expert knows a good estimate of this variable. We
would like to investigate various methods and optimization criteria for assessing
a good window size in the future. Additionally, we would like to expand our
experiments to several other types of CPS to strengthen the generic applicability
of our proposed solution.
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19. Petitjean, F., Gançarski, P.: Summarizing a set of time series by averaging: from
steiner sequence to compact multiple alignment. Theoret. Comput. Sci. 414(1),
76–91 (2012)

20. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a
haystack: detecting knee points in system behavior. In: 2011 31st International
Conference On Distributed Computing Systems Workshops, pp. 166–171. IEEE
(2011)



Assurance of Learning-Enabled Systems



Assuring the Safety of Machine Learning
for Pedestrian Detection at Crossings

Lydia Gauerhof1,2(B), Richard Hawkins2(B), Chiara Picardi2, Colin Paterson2,
Yuki Hagiwara1, and Ibrahim Habli2

1 Corporate Research Robert Bosch GmbH, Renningen, Germany
lydia.gauerhof@de.bosch.com
2 University of York, York, UK
richard.hawkins@york.ac.uk

Abstract. Machine Learnt Models (MLMs) are now commonly used in
self-driving cars, particularly for tasks such as object detection and clas-
sification within the perception pipeline. The failure of such models to
perform as intended could lead to hazardous events such as failing to
stop for a pedestrian at a crossing. It is therefore crucial that the safety
of the MLM can be proactively assured and should be driven by explicit
and concrete safety requirements. In our previous work, we defined a pro-
cess that integrates the development and assurance activities for MLMs
within safety-related systems. This is used to incrementally generate the
safety argument and evidence. In this paper, we apply the approach to
pedestrian detection at crossings and provide an evaluation using the
publicly available JAAD data set. In particular, we focus on the elicita-
tion and analysis of ML safety requirements and how such requirements
should drive the assurance activities within the data management and
model learning phases. We explain the benefits of the approach and iden-
tify outstanding challenges in the context of self-driving cars.

Keywords: Machine Learning · Safety argument · Self-driving car ·
Safety assurance process

1 Introduction

The assurance of safety-related systems which utilise Machine Learnt Models
(MLMs) can only be achieved when arguments concerning the safety of the
MLM are provided in the context of the overall system into which the model is
deployed. For safety-related applications, the performance of the model is just
one aspect that may be of interest; we must also take a much broader view of
which aspects are important to assure the safety of the MLM. These aspects
should be defined in the form of explicit Machine Learning (ML) safety require-
ments and should drive the way in which the MLM is trained and verified, with
a particular focus on the quality and suitability of the training and verification
data sources.
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In [15] we introduced a process for generating assurance arguments for MLMs.
This process integrates development and assurance activities and can be used to
incrementally generate the safety assurance argument and evidence that can be
used to form a safety case for the MLM within the safety related context. We also
described the structure of such arguments in the form of safety argument pat-
terns [15]. Although some simple illustrative examples were provided, the details
of how to implement the process activities, and the nature of the evidence that
is generated were not provided. This paper seeks to address this by considering
the safety-related automated driving scenario of a self-driving car approaching a
pedestrian crossing. For this scenario we use a MLM for detection of pedestrians
at the crossing that is trained on a publicly available dataset [17]. In particular,
by considering this credible scenario and its associated safety implications, the
primary contribution of the paper is that it shows how safety requirements can
be systematically and traceably generated and refined across the different life-
cycle phases of the MLM, particularly focussing on the data management and
model learning requirements.

The rest of this paper is structured as follows. Section 2 provides an overview
of our MLM safety assurance process. In Sect. 3 we describe the autonomous driv-
ing scenario that we used for our experiment and introduce the safety require-
ments for the system. Section 4 details the ML requirements that we derived
for the scenario. Section 5 assesses the degree to which these requirements are
satisfied for the data management and model learning stages of the lifecycle
respectively. Section 6 discusses related work, draws conclusions from the paper
and discusses our future work.

2 Model Learning Safety Assurance Process

The process we developed for assuring the safety of MLMs was presented in [15].
We split the ML lifecycle into five stages: requirements elicitation, data manage-
ment, model learning, model verification and model deployment. Traditionally
ML development has focused on data collection and model performance. For
safety-related systems, a much broader view of ML development is required. In
particular, the requirements elicitation stage must ensure that the ML require-
ments reflect the intent of the broader system-level safety requirements [9]. The
model verification stage must provide an independent check that the require-
ments are satisfied and this must be particularly focused on the verification of
explicit safety requirements. The model deployment stage must ensure that the
learnt model will be acceptably safe when integrated into the larger system. To
ensure that each lifecycle stage provides what is required to support a safety
case, we can define a set of desired properties (desiderata) for each stage. It is
important to have a clear and sufficient set of desiderata. For the work reported
in this paper, we have used the assurance desiderata proposed by Ashmore
et al. in [1].

To ensure the desiderata are satisfied, specific ML safety requirements must
be specified for each lifecycle stage. This is the focus of this paper. These ML
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requirements must relate to the specific safety requirements determined for the
system into which the MLM will be deployed. The relationship between safety
requirements at a system level and detailed ML requirements is not always obvi-
ous. For example, a safety requirement may define the need to identify all stop
signs in an urban environment in sufficient time for the vehicle to stop com-
fortably. Turning this into specific and meaningful ML requirements relating to
desiderata such as data coverage, model robustness or model accuracy is chal-
lenging and rarely discussed in a way that is justifiably traceable to system
safety requirements. This paper describes how this may be done for a credible
automotive scenario, focussing on ML safety requirements for data management
and model learning. As part of a safety case, it must be demonstrated that the
defined ML safety requirements are met. We discuss the activities that may be
performed during the ML lifecycle to generate evidence to support this.

3 Pedestrian Detection at Crossings Scenario:
Vehicle-Level Safety Requirements

We consider a MLM that is being used to identify pedestrians at pedestrian
crossings so that an autonomous vehicle is able to stop safely. We consider that
a car (the Ego vehicle) is driving autonomously in an urban environment and is
approaching a crossing. We can specify a safety requirement on the Ego vehicle
as follows:

Ego Shall Stop at the Crossing If a Pedestrian is Crossing
At this level the safety requirement is defined for the vehicle as a whole. It
is important to note that this safety requirement would apply to the vehicle
irrespective of the use of ML as part of the implementation. Based on system
level safety analysis, other safety requirements could be identified (such as that
the Ego vehicle should not stop unnecessarily at a crossing) but we do not
consider those within this paper.

In order to elicit safety requirements for the MLM it is first necessary to
identify the safety requirements that apply to the relevant system component,
in this case the object detection component. The safety process decomposes the
system level safety requirement to the different components of the Ego vehicle.
This takes account of the proposed system architecture for the vehicle as well as
the relevant operating scenarios and operating environment as discussed below.

Ego is able to sense the environment using a Bosch stereo video camera [12]
that is fitted above the rear view mirror. The camera has an image size of
1280× 960 pixels and a frame rate of 30 images per second. The images are sent
to the object detection component that identifies pedestrians in the images and
creates bounding boxes around each pedestrian. Figure 1 shows an example of
an image in which all pedestrians in the scene were successfully identified. These
are indicated by the green bounding boxes in the image. In this case, the image
has also been annotated with white bounding boxes which show the ground
truth. This indicates that even though all objects were successfully detected
errors in the bounding boxes still remain. By contrast, Fig. 2 shows an image
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from the same crossing in which there are several identification errors in the
object detection, with pedestrians who were not spotted by the object detection
indicated by blue boxes in the scene.

Fig. 1. An ideal pedestrian detection at crossings. (Color figure online)

Fig. 2. An example of missed detections at crossings. (Color figure online)

It is crucial that the context within which the vehicle is expected to function
is clearly and explicitly specified. For road vehicles this is normally done through
the specification of the Operational Design Domain (ODD) [7]. J3016 defines an
ODD as “operating conditions under which a given driving automation system or
feature thereof is specifically designed to function, including, but not limited to,
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environmental, geographical, and time-of-day restrictions, and/or the requisite
presence or absence of certain traffic or roadway characteristics” [19].

One of the reasons for specifying the ODD is to reduce the complexity of
the input space. For instance, particular geographical areas and country-specific
circumstances, such as traffic signs, can be excluded. Also weather conditions
such as snow, and time of day such as night, may be excluded, meaning that
Ego would not operate autonomously under such conditions. Measures are put
in place to ensure operation does not occur under the excluded conditions [5].
There are a number of approaches to structuring the ODD, such as equivalence
classes [18]. There are also a number of ODD ontologies that have been sug-
gested [7,11].

In the driving scenario in this paper, the ODD specifies that Ego operates
on roads in the UK and in daylight, and that the weather conditions may be
variable. In order to make our scenario concrete, we assume that pedestrians
will only cross the road at the crossing, so we do not here consider pedestrians
stepping off the pavement into the road.

Based on this we are able to specify safety requirements on the object detec-
tion component. This component is implemented in our example system using an
MLM, in this case classification using a Convolutional Neural Network (CNN)
based on SqueezeNet and localisation based on a Region Proposal Network
(RPN). It is important to note however that at this point, the safety require-
ments could apply equally to the component whether it was a MLM or a more
traditional software component.

To elicit the safety requirements we first consider the performance required
of the object detection in order to satisfy the high-level safety requirement.
Table 1 defines three performance related requirements. The justification for
these requirements is provided below.

Table 1. Performance and robustness requirements for object detection.

Performance

RQ1: When Ego is 50 m from the crossing, the object detection component shall
identify pedestrians that are on or close to the crossing in their correct
position

RQ1.1: In a sequence of images from a video feed any object to be detected
should not be missed more then 1 in 5 frames

RQ1.2: Position of pedestrians shall be determined within 50 cm of actual position

Robustness

RQ2: The object detection component shall perform as required in all situations
Ego may encounter within the defined ODD

RQ3: The object detection component shall perform as required in the face of
defined component failures arising within the system

For RQ1, 50 m is specified as this is the minimum distance at which a decision
to stop must be made if Ego is to stop comfortably at the maximum assumed
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speed. Stopping safely at a crossing requires consideration of this comfortable
braking distance for the Ego vehicle; it would not be acceptable to brake exces-
sively for pedestrians. The maximum comfortable braking distance will depend
upon the speed of Ego and the road surface conditions. We assume for this sce-
nario that comfortable braking loses roughly 20 kph per second on a damp road,
so if Ego is travelling at 60 kph in the urban area it will take around 50 m to stop
comfortably. This requires that Ego has sufficient confidence in the identifica-
tion of pedestrians at 50 m, prior to this point Ego will be detecting the possible
presence of pedestrians, however the uncertainty in those identifications may be
relatively high.

RQ1 assumes that any pedestrian close to the crossing is intending to cross.
This is certainly a conservative assumption that may result in some unrequired
stopping, but is made here to simplify the scenario. In practice this could be
mitigated through trajectory prediction for pedestrians (so for example pedes-
trians close to, but moving away from, the crossing would be rejected). It is
taken that any pedestrian within one metre of the crossing is considered to be
close to the crossing for the purposes of this scenario. Any pedestrians further
away than this are assumed to be not intending to cross prior to Ego arriving
at the crossing.

RQ1.1 and RQ1.2 further refine RQ1 by considering how good the perfor-
mance of pedestrian identification and positioning needs to be in the context of
the high-level system safety requirement and the system architecture. RQ1.1 is
based upon the frame rate of the video feed as described above, and considers
the fact that the ML model is deployed to a pipeline in which computational
power is limited. As such the model may be unable to identify all objects in the
scene for every frame at run-time. However the frame rate is such that the sub-
sequent component into which the output of object detection is fed will ignore
single frame changes in detections. RQ1.2 is based upon an assessment that
50 cm discrepancy in position provides a sufficient safety margin for pedestrians.

In addition to requirements on performance, it is also necessary for the per-
formance of the object detection to be robust to the different situations that Ego
may encounter. Table 1 defines two requirements relating to robustness. RQ2 is
justified on the basis that if a situation that Ego encounters is outside of the
defined ODD then the system will revert to a fail-safe or a manual drive mode
(it is not required for object detection to cope with such situations). The safety
of such transitions would be handled at the vehicle level. RQ3 acknowledges that
the system components cannot be assumed to always perform perfectly. Object
detection must therefore be able to cope with some defined failures or degrada-
tion. It should be noted that any failures in other system components that are
not specified or are unanticipated must still be dealt with, but this would be
done as part of the vehicle level safety case.

As the object detection is implemented using a MLM, these safety require-
ments on object detection must be interpreted to be meaningful for ML to enable
assurance of the MLM to be demonstrated. In the next section we describe how
ML safety requirements are derived.
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4 ML Safety Requirements Elicitation

In order to create a safety argument for the MLM, it is necessary to specify con-
crete and meaningful ML safety requirements, i.e. traceable to the vehicle and
component-level safety requirements as discussed in Sect. 3. That is, the ML
requirements must be sufficient to ensure that the safety requirements identified
in Sect. 3 are satisfied. The ML safety requirements are defined with a consid-
eration of each phase of the ML lifecycle and the identified desiderata for each
phase. In this paper we focus on the requirements for the data management and
model learning phases.

Tables 2, 3 and 4 show the ML requirements that we have derived for these
phases of the lifecycle. The tables enumerate requirements for each of the identi-
fied desiderata. For the data management phase, the desiderata we use are that
the data should be relevant (Table 2), complete (Table 3), accurate (Table 4), and
balanced (Table 4). These desiderata are consistent with the work of Ashmore
et al. in [1] where the desiderata are discussed in more detail. The ML require-
ments reflect these ML desiderata within the context of the safety requirement
we have identified for object detection in our scenario. A justification for these
requirements is provided below.

Table 2. ML requirement elicitation for the Relevant desiderata of the Data Man-
agement lifecyle phase.

RQ4: All data samples shall represent images of a road from the perspective
of a vehicle

RQ5: Crossings included in data samples shall be of a type found on UK
roads

RQ6: Pedestrians included in data samples shall be of a type that may use
crossings on UK roads

RQ7: The format of each data sample shall be representative of that which is
captured using sensors deployed on the ego vehicle

RQ8: Each data sample shall assume sensor positioning which is
representative of that be used on the ego vehicle

If we first consider the requirements relating to the ‘Relevant’ desiderata,
we must specify requirements that define which data is relevant to the safety
requirements. Any data that is not relevant should be excluded from the data
set. In order to have relevance in this context, the data sample must be an image
that features a road as it may appear to Ego vehicle, and where this includes
features of interest these should be relevant to the operational domain. In this
case the features of interest are crossings and pedestrians. Relevant images would
be expected to include some or all of these features. RQ4 to RQ6 capture this
requirement for relevant data samples.

In addition the format of each image must be relevant. Since we understand
the way in which images will be captured on the Ego vehicle, we can identify
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Table 3. ML requirement elicitation for the Complete desiderata of the Data Man-
agement lifecyle phase.

RQ9: The data samples shall include sufficient range of environmental
factors within the scope of the ODD

RQ10: The data samples shall include sufficient range of pedestrians within
the scope of the ODD

RQ11: The data samples shall include images representing a sufficient range
of distances from the crossing up to that required by the decision
making aspect of the perception pipeline

RQ12: The data samples shall include examples with a sufficient range of
levels of occlusion giving partial view of pedestrians at crossings

RQ13: The data samples shall include a sufficient range of examples reflecting
the effects of identified system failure modes

Table 4. ML requirement elicitation for the Accurate and Balanced desiderata of
the Data Management lifecyle phase.

Accurate

RQ14: All bounding boxes produced shall be sufficiently large to include the
entirety of the pedestrian

RQ15: All bounding boxes produced shall be no more than 10% larger in any
dimension than the minimum sized box capable of including the
entirety of the pedestrian

RQ16: All pedestrians present in the data samples must be correctly labelled

Balanced

RQ17: The data shall have a comparable representation of samples for each
relevant class and feature (any class must not be under-represented
with respect to the other classes or features)

factors that are important to ensure the images are of a relevant format. In
this case the relevant factors are the type of image created by the sensors and
the position of the sensors in the vehicle. Physical properties of sensors can
have a profound impact on the data gathered and it is often easier to collect
data from publicly available sets or test harnesses which differ from the final
deployed system. For example, the lenses on two different cameras will have
different levels of distortion, vignetting and chromatic aberration. In order to
ensure that issues of distributional shift, due to sensor variation, are avoided
we can specify a requirement to ensure that the sensors used in training and
deployment are not materially different (RQ7). The images, even if not generated
from the Ego vehicle itself, must reflect the position of Ego’s sensors. RQ8 defines
this requirement.

We next consider the desiderata ‘Complete’. From the robustness require-
ment RQ2 we know the data must include sufficient examples to reflect different
situations Ego may encounter. Through consideration of the defined ODD we
know these must include, for example, variations in the environment (a defined
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range of lighting and weather conditions), and in pedestrians (a defined range
of ages, sizes, numbers of people and variations in gait and pose). It should be
noted that an explicit enumeration of the scope of such variables is particularly
critical when using MLMs in order to ensure robustness can be achieved. Experi-
ence has shown us that complex ML models can become over reliant on features
in the image (over-fitting) if insufficient variation in those features is present in
the data. By ensuring that a range of pedestrian features are present in the data
sets we are less likely to produce models which fail to perform appropriately in
the real world. RQ9 and RQ10 capture these requirements with referenced to the
ODD, it is crucial therefore that the ODD is clearly documented and validated
as part of the vehicle safety process. As well as exploring the scope of the ODD
to consider different situations, we must also consider the impact on the images
of the distance of Ego from the crossing (affecting the size of image features),
and the possibility of occlusions in the image (we have discussed these effects in
more detail in [2]. RQ11 and RQ12 address this issue.

From the robustness requirement RQ3 it has already been identified that
the object detector must perform acceptably in the face of system failures. We
acknowledge that the performance of a sensor will degrade over time, for example
a camera lens will become scratched. Since this is generally unavoidable we must
be confident that the performance of the object detection is not impacted by
normal wear and tear. This means that the data used in the ML lifecycle must
include sufficient examples that reflect the effects of these system failures on
the images that are obtained. The relevant failures must be identified through
failure analysis of the system (for example this could be linked to the outputs of
an FMEA). RQ13 is specified to address this issue.

Another desiderata that must be considered is ‘Accurate’. The performance
of MLMs is highly dependent on the quality of the data from which they learn
and as such all labelling should be accurate. The performance requirement RQ1.2
specifies a performance requirement on the prediction of the pedestrian’s posi-
tion. In order to assess this performance it is necessary to compare model predic-
tions with the ground truth labels encoded in the training and testing data sets.
RQ14 is therefore specified to ensure that the bounding box added to the dataset
contains the whole of the pedestrian. If any part of the pedestrian, for example
an arm or a leg, were not included inside the bounding box then when the model
performance were assessed with reference to the bounding box a model could be
deemed to meet the performance requirements when it actually breached the
50 cm required by RQ1.2. Whilst this requirement specifies a minimum size for
the bounding box, it does not consider a maximum size. It would be possible to
meet RQ14 by creating very large boxes around every pedestrian, however this
is likely to make the system unusable as free space is essentially identified as
containing a pedestrian. RQ15 addresses this issue by specifying a limit on the
size of the bounding box.

The performance requirement RQ1.1 may be interpreted as an ML require-
ment to avoid false negatives. This leads to a requirement on the accuracy of
the training data. The training data is labelled (by a human) to identify the



206 L. Gauerhof et al.

pedestrians in each image. Manual labelling of data is error prone and drawing
bounding boxes in particular is difficult. If the images are labelled incorrectly
such that the pedestrians are not identified in the image then this can lead to
false negatives in the output of the MLM as well. RQ16 is specified to address
this.

Finally RQ17 addresses the desiderata ‘Balanced’. The requirements have
already specified the need for relevance and coverage in the data, it is also
important that certain features are not over or under represented in the data set.
Again the relevant classes and features can be identified through consideration
of the ODD.

Having defined explicit ML safety requirements it is then necessary to demon-
strate that the ML requirements are satisfied. In Sect. 5 we discuss whether the
data we used in this experiment meet the ML safety requirements and whether
additional activities are required to support a safety case. Section 5.2 then dis-
cusses this for the model that is learnt.

5 Satisfying ML Safety Requirements

In order to investigate the sufficiency of the requirements defined in this paper we
considered an experimental object detection MLM consisting of a CNN trained
using the JAAD dataset [17]. In this section the data management and model
learning for this MLM is assessed against the defined requirements to determine
whether the requirements are satisfied. This highlighted areas where the MLM is
insufficient from a safety assurance perspective, and identified additional assur-
ance activities that would be required. This highlights the key role of an explicit
elicitation of ML safety requirements in assuring MLMs.

5.1 Assessing the Data Management Safety Requirements

In this section, we discuss each data requirement presented in Tables 2, 3 and 4
with reference to the JAAD dataset used in our experiment.

RQ4–5: In the dataset there are 25 videos relative to pedestrian crossing at des-
ignated and signalised crossings. For each of these videos approximately 82,000
image samples can be extracted. The recordings were done during 240 h of driv-
ing across several locations in North America and Eastern Europe. Even if some
of the crossings could be considered similar between Eastern Europe and UK
(e.g. zebra and pegasus crossings), the data does not meet this requirements
because UK locations are not included in the recording and therefore not all UK
pedestrians crossings types are considered. In particular it can be easily noted
that Pelican crossings are not included in the data. Augmenting the data by syn-
thesising missing images can partially solve the problem, but the data samples
generated must be very close to real world images. A better solution could be
to undertake additional data collection in different UK crossing locations.
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RQ6: When considering the JAAD dataset, we see that many classes of pedes-
trian are included, e.g. examples of children are included as is a man pushing
a buggy. There are however some relevant omissions from this including people
with disabilities, and people with different colour skin or ethnicity. When con-
sidering if there are any particular characteristics of UK pedestrians it seems
important given the UK climate to ensure there are images of people carrying
umbrellas or wearing waterproof jackets. These are not found in the data. There-
fore the dataset could not be said to meet this requirement as more data would
need to be collected that included the missing categories.

RQ7: The cameras used for the recording of the dataset are describe in [16].
The resolution of the three cameras are compatible with the one deployed in
the ego vehicle (see Sect. 3). Consequently, this requirement can be considered
satisfied.

RQ8: The camera recording the data used is positioned inside the car below the
rear view mirror as described in [16]. In the ego vehicle the camera is mounted
inside the car above the rear view mirror. Although the position is not exactly
the same of the ones used for the data recording the distance is not significant
and as such the requirement is satisfied.

RQ9–10: The data represents some different weather conditions (e.g. snow and
rain). They do not consider different positions of the sun or different daytime
lighting (e.g. sunset). Limited visibility weather conditions like fog are also not
included, even though this is part of the ODD. The data includes pedestrians of
different ages and height, as well as different walking speeds. No running pedes-
trians are included however. Although there are a sufficient range of examples
for some features, for others the data is found to be lacking. Augmentation tech-
niques can be applied to address this, for example by varying the colour of pixel
or the orientation of pedestrians to the camera as done in previous work (e.g.
[6]). In particular, Zhang and colleagues [20] described a method, through the use
of a Generative Adversial Network (GAN), to synthesize scenes for autonomous
driving simulating different weather conditions and then different lighting condi-
tions. Further, possible evidence for supporting the argument in order to satisfy
the requirements can be represented by performance graphs showing the dif-
ference between original and augmented data and how the different features
included influence the performance. The data include some busy crossings that
have groups of up to a maximum of 11 people. The performance of the MLM in
identifying pedestrians when in groups compared to individuals could be used
as evidence of this requirement. If performance is seen to be worse for groups,
then more data samples for groups of people should be included.

RQ11: In most of the images included in the dataset, the pedestrians are very
close to the car so do not respect the distance necessary for the pipeline decision
making (in excess of 50 m). The dataset would therefore be inappropriate against
this requirement.

RQ12: There is partial occlusion of pedestrians in some of the data samples.
For example, some pedestrians are occluded by gates or by the car in front of
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the Ego vehicle. Again, the number of occluded data samples could be increased
through synthesis. For example artificial masking of pedestrians could be used
to help meet the requirement.

RQ13: Data samples derived from identified failures in the system are not
present in the dataset. Also the classifier is not tested with adversarial attacks.
For these reasons the requirements are not satisfied. In order to satisfy these
requirements failures need to be identified and recorded in a report that can be
used as evidence to support the argument. After failures are identified, corre-
sponding data samples need to be added to the data set.

Req.14–16: While the process used to generate the dataset is described in [16],
there is limited information regarding the generation of bounding boxes. Piotr’s
annotation toolbox [8] is used to define the bounding boxes and annotate the
images. However, there is no information regarding the process to ensure that
these are correct with respect to ground truth. The accuracy of the labelling is a
function of the skills of the individuals undertaking the task and the validation
processes used during labelling.

RQ17: Using a public dataset results in a lack of information and control in
the number of data samples recorded for each feature of interest. Features that
are under-represented have to be identified and possibly over-sampled in order
to improve the performance of the classifier in presence of these features. Aug-
mentation approaches can be used here, as well as other techniques for detecting
and mitigating rare classes, such as [14].

In short, a public dataset such as JAAD is not sufficient to satisfy the ML
safety requirements for our scenario. This result is not unexpected, but it high-
lights the role of explicit ML safety requirements in both highlighting deficiencies,
and identifying necessary actions. Public datasets can however be useful for an
exploratory analysis in order to refine the requirements as suggested by Gelman
and colleagues [10].

5.2 Assessing the Model Learning Safety Requirements

In this section we discuss the ML safety requirements that relate to the learned
model itself as presented in Table 1, with reference to the model used in our
experiment.

RQ1: In order to evaluate classifiers in the automotive domain it is common
practice to use the log average miss rate (LAMR) [13]. Having constructed a
convolution neural network as an MLM, we calculated the LAMR for images in
the dataset. When considering all pedestrians larger than 50 pixels in the image,
we obtain an LAMR of 29.03%. We note that for those pedestrians between 50
and 75 pixels this increases to 46.78%. These results are shown in Fig. 3a and
Fig. 3b with more detail provided in Table 5.

RQ1.1: The JAAD dataset does provide a labelling which allows for each object
to be tracked through frames. However, at present we do not have access to a
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a) MR vs. FPPI for pedestrians larger than
50px in height.

b) MR vs. FPPI for pedestrians detection of
the size 50px to 75px.

Fig. 3. Miss rate (MR) vs. false positive per image (FPPI) for pedestrian detection
with different heights.

pipeline which allows us to generate evidence to evaluate whether the MLM
meets this requirement. This remains as future work.

RQ2: The images in the data set only cover 5 locations with the vast majority
of videos captured in one location. Some of the images included weather fea-
tures, for example LAMR results are shown in Table 6 for LAMR under snow
conditions. Even these cases are restricted since snow is lying on the ground, so
variations such as falling snow are missing. The generation of the JAAD database
used for training required considerable effort, especially in the labelling of objects
within the scene. In order to assess the ability of the MLM to operate at locations
other than those in the JAAD dataset would require additional data collection
and significant labelling effort. Without this, it is impossible to assess if the
requirement could be met using this MLM.

Table 5. Log average miss rate (LAMR) of pedestrian detection with different heights
of bounding boxes and occlusion severity (the smaller, the better).

Heights in Pixels LAMR in % LAMR in % LAMR in %

No occlusion Occlusion 25%–75% Occlusion >75%

Small 50–75 46.78 54.12 62.18

Medium 75–100 20.22 28.91 36.49

Large 100–200 7.96 16.14 25.72

Huge 200–400 7.47 13.18 19.05

Giant 400–600 10.76 21.18 31.03

RQ3: The JAAD videos were not captured using sensors traditionally used for
autonomous vehicles. Instead, consumer video cameras were employed. In order
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to evaluate the effects of sensor wear, we would need to either simulate wear on
the images, which would require a wear model to be validated, or we would need
to collect data using sensors which had been subjected to appropriate wear,
e.g. lens scratches etc. This new set could then be used as a test set on the
candidate MLM. At present no such wear model or testing set exists and we can
not therefore assess if the requirement is met.

Table 6. Log average miss rate (LAMR) of pedestrian detection with different heights
and occlusion severity under the snow conditions

Heights in Pixels LAMR in % LAMR in % LAMR in %

No occlusion Occlusion 25%–75% Occlusion >75%

Small 50–75 39.30 47.01 55.89

Medium 75–100 13.78 19.08 27.65

Large 100–200 9.08 19.92 32.21

Huge 200–400 4.44 7.92 12.39

Giant 400–600 – 15.77 34.00

6 Discussion and Conclusions

There is no established approach to the assurance of MLMs for use in safety-
related applications. Within the automotive domain, established safety stan-
dards such as ISO26262 do not consider MLMs. Traditional testing methods and
test coverage metrics used for safety-related software, such as Modified Condi-
tion Decision Coverage, are not applicable to Neural Networks [3]. To try to
close this gap, Cheng et al. introduced metrics for measuring NN dependability
attributes including robustness, interpretability, completeness and correctness.
Building upon this and other works, in [4] they introduce an “NN-dependability-
kit” that could be used to support the development of a safety argument. Their
work is not however driven by specific requirements that are explicitly and trace-
ably linked to system-level safety analysis. Being able to demonstrate and justify
this link is crucial to creating a compelling safety case.

This traceable link between system safety requirements and ML safety
requirements is the focus of our work reported in this paper. This is impor-
tant for two reasons: to maintain the link with vehicle-level hazardous events
(and their mitigation) and to ensure that safety considerations are addressed in
the detailed ML lifecycle phases. In particular, as we have shown in this paper,
the ML safety requirements can be used to drive and scope the safety assurance
activities. In this paper we have focused on the ML safety requirements for the
data management and model learning phases. In our ongoing work, we intend to
extend this to consider ML verification and deployment, which are two crucial
aspects for a compelling safety case. Furthermore, formalizing these require-
ments in contract-based design allows machine support for refinement checks
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within a component-based system [2]. We hope that this work is of benefit to
both researchers and engineers and helps inform the current debate concerning
the safety assurance and regulation of autonomous driving.
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Abstract. We study how state-of-the-art neural networks for 3D object
detection using a single-stage pipeline can be made safety aware. We
start with the safety specification (reflecting the capability of other com-
ponents) that partitions the 3D input space by criticality, where the
critical area employs a separate criterion on robustness under pertur-
bation, quality of bounding boxes, and the tolerance over false nega-
tives demonstrated on the training set. In the architecture design, we
consider symbolic error propagation to allow feature-level perturbation.
Subsequently, we introduce a specialized loss function reflecting (1) the
safety specification, (2) the use of single-stage detection architecture,
and finally, (3) the characterization of robustness under perturbation.
We also replace the commonly seen non-max-suppression post-processing
algorithm by a safety-aware non-max-inclusion algorithm, in order to
maintain the safety claim created by the neural network. The concept is
detailed by extending the state-of-the-art PIXOR detector which creates
object bounding boxes in bird’s eye view with inputs from point clouds.

1 Introduction

For perceiving the environment in automated driving, techniques for detecting
object presence in 3D have been predominantly implemented using deep neu-
ral networks. While state-the-the-art implementations for 3D object detection
achieve superior performance, for building trust over the created artifact, the
underlying engineering process should be safety-aware. Concretely, for certifi-
cation authorities, it is essential to demonstrate that the safety specification is
reflected in the design of the neural network and is aligned with the design of
the post-processing algorithm.

In this paper, we study how safety concepts can be integrated into engineering
3D object detection networks with single-stage detection. Our process starts by
defining the critical area and the associated quality attributes. Intuitively, the
critical area is the area nearby the ego vehicle where failed detection of an object
may lead to immediate safety risks. How one defines the critical area can be
dependent on the capability of the ego vehicle, such as maximum braking forces.
Apart from detecting the presence of objects, the quality of detection should also
be dependent on the safety characteristics of other components in the system
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 213–227, 2020.
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such as motion planners. For instance, some collision avoidance algorithms may
assign a fixed buffer around the bounding boxes (provided by the perception
module as input) to perform planning. If the size of the real object exceeds the
predicted bounding box by the buffer size, physical collisions, although unaware
by motion planners, may appear. The separation of the critical area and the non-
critical area leads to the separation of the corresponding architectural design and
the definition of the loss function, where the subsequent design is guided by safety
for the critical area and but is driven by performance for the non-critical area.
We then restrict ourselves to the training and the post-processing pipeline, and
exemplify how a single-stage detection network such as PIXOR [19] and its post-
processing algorithm should be altered. For prediction in the critical area, we
adapt training techniques that incorporate feature-level perturbation, and define
a loss function over perturbed worst case, the label, and the allowed tolerance.
We also provide a mathematically proven bound to associate (i) the tolerance in
prediction-label difference and (ii) the required buffer to ensure that a prediction
contains the labeled bounding box. For post-processing, we use an alternative
non-max-inclusion algorithm, which intuitively enlarges the predicted bounding
box by considering other predictions on the same object with a slightly lower
probability. The use of non-max-inclusion is conservative, but it ensures that the
safety claims made in the neural network remain valid after post-processing.

By including this concept to the development process, one immediate benefit
is for certification authorities to obtain profound transparency regarding how
safety concepts can be demonstrated in the concrete design of neural networks
and the following post-processing algorithm. Our proposal does not prohibit the
use of standard training with commonly seen loss functions (e.g., mean square
error). Instead, one may use parameters trained with standard approaches as
initializing parameters; subsequently, perform parameter fine-tuning under spe-
cial loss functions that consider area-criticality and robustness. Our proposal
also does not prohibit the use of other further post-processing algorithms such
as utilizing time-series data, as in single-stage detection networks, non-max-
suppression is executed immediately on the output of the neural network, and
our proposal merely replaces non-max-suppression by a customized algorithm.

In summary, our primary contributions are (i) an exemplification of the
safety concept reflected into the architecture design and the corresponding post-
processing; (ii) a formally stated constraint associating the quality of the predic-
tion and the its effect on the interacting components such as planners; and (iii)
the extension of provable robustness into single-stage object detection networks.1

2 Related Work

There exist many novel neural network architectures that can perform object
detection from point clouds, including PIXOR [19], VeloFCN [9], PointRCNN [13],
Vote3Deep [4], among others. Our work starts with the idea of refining the PIXOR
1 Due to space limits, we refer readers to https://arxiv.org/abs/2003.11242 for proofs

of the lemmas and our preliminary evaluation.

https://arxiv.org/abs/2003.11242
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system to make (i) the design of neurons, (ii) the design of the loss function, and
(iii) the immediate post-processing algorithm linked to requirements imposed
from the safety argumentation and capabilities from other components. This
makes the overall system design driven by safety rather than by performance,
in contrast to existing design methodologies. For example, standard PIXOR only
sets the loss to zero when the prediction perfectly matches the label. Our exten-
sion sets the loss to be zero, so long as the prediction is close to the label by a
fixed tolerance. This allows the loss to be overloaded on cases with perturbation,
where the perturbed input also leads to zero loss, so long if the produced output
falls into the tolerated bound. Another example is to use the non-max-inclusion
post-processing algorithm that enables to maintain provable guarantees in con-
trast to the standard non-max-suppression algorithm.

For engineering robust neural networks, the concept in this paper is highly
related to the work of provably robust training [11,12,14–18]. While current
research results target simple classification or regression tasks, our focus is to
extend these results such that the technique scalably applies to single-stage
object detection neural networks that produce a vector of outputs on each grid.

Lastly, we are also aware of fruitful research results in safety certification of
machine learning components, with some focusing on safety argumentation [1,
5,8,10] while others on testing and formal verification (see [7] for a survey on
results in formal verification, testing, and adversarial perturbation). While these
works contribute to the overall vision of rigorous safety engineering of neural
networks, these results do not touch the construction of the neural networks. In
this way, our research well complements these results as we focus on constructing
the neural network (architecture and the loss function) and the immediate post-
processing algorithm such that they can reflect the safety argument.

3 Neural Networks and the PIXOR Architecture

A deep neural network is comprised of N layers where operationally, the n-
th layer for n ∈ {1, . . . , N} of the network is a function g(n) : Rdn−1 → R

dn ,
with dn being the dimension of layer n. Given an input in ∈ R

d0 , the output
of the n-th layer of the neural network f (n) is given by the functional com-
position of the n-th layer and the previous layers f (n)(in) := ◦(n)i=1g

(i)(in) =
g(n)(g(n−1) . . . g(2)(g(1)(in))). Given input in, the prediction of the neural net-
work is thus f (N)(in). We use g

(n)
j to denote the j-th neuron in layer n, and for

fully connected layers, computing g
(n)
j is done by a weighted sum (characterized

by the weight matrix Wn
j and bias bj) followed by applying a nonlinear activa-

tion function ρn
j , i.e., g

(n)
j := ρn

j ((
∑d(n−1)

k=1 Wn
jkg

(n−1)
k (in)) + bj). Note that such

a definition allows to represent commonly seen architecture variations such as
residual blocks or top-down branches that are used in PIXOR. Given a tensor v,
we use subscript v〈i,j〉 to extract the tensor by taking the i-th element in the first
dimension and j-th element in the second dimension. Lastly, define the training
set for the neural network to be T := {(in, lb)} where for every input in ∈ R

d0 ,
lb ∈ R

dN is the corresponding label.
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PIXOR [19] is a single-stage detector neural network that, based on the input
as point clouds, directly predicts the final position and orientation of an object. By
single-stage, we refer to neural networks where there exists no intermediate step
of proposing possible areas (region proposal) in 3D for suggesting the potential
existence of an object in the area. In this paper, we follow the original formulation
in [19] to only detect the presence of a “car” as in the KITTI dataset [6]. One can
easily extend the network architecture to include other object types.

Fig. 1. Visualizing the relation between
grids and x-y coordinates. The bottom-left
grid has an index 〈0, 0〉, and its center point
is translated to the x-y coordinate equaling
(α
2
, − 11α

2
).

The input dimension d0 of the
PIXOR network is (L,W,H). Provided
that the positive direction of the x
coordinate facing in the front wind-
shield of the car, the positive direction
of the y coordinate facing to the left
of driver, and the positive direction
of the z coordinate facing up, each
in〈i,j,k〉 contains the density of the
lidar point cloud centered at the point
(iα + α

2 , (j − W
2 )α + α

2 , kα + α
2 ) with

α being the size of the grid. Figure 1
illustrates how grids are mapped to
the physical 2D dimension.

The output dimension for the net-
work is dL = (L

β , W
β , 7) with β being

the down-scaling factor. The output
f (N)(in)〈i,j〉, i.e., the output at grid
〈i, j〉, is a 7 tuple (pr, cos(θ), sin(θ),
dx, dy, log(w), log(l)), where 〈i, j〉 is
matched to the physical area in 2D
centered by point (iαβ + αβ

2 , (j − W
2β )αβ + αβ

2 ) with αβ being the size of the
output grid. The output of the network essentially predicts, for each grid in 〈i, j〉
in the 2D plane, if there is a vehicle nearby. In the original PIXOR paper [19], the
grid size α is set to 0.1 m and β is set to 4, meaning that the output grid has a
physical quantity of 0.4 × 0.4 m2. Figure 2 shows the visualization of the output
relative to the center of the grid. One direct consequence is that it is possible
for multiple grids to create prediction over the same vehicle (as the grid size is
very small), by having a different displacement value dx and dy to the center of
the vehicle. Therefore, a post-processing algorithm called non-max-suppression
is introduced. The idea is to first pick the output grid whose prediction proba-
bility is the largest while being larger than the class threshold α. Subsequently,
create the prediction as a bounding box, and remove every prediction whose
bounding box overlaps with the previously created bounding box (for the same
type) by a certain threshold, where the degree of overlapping is computed using
the intersection-over-union (IoU) ratio. For the example in Fig. 2, the vehicle
prediction on the right will be neglected as the probability (pr = 0.8) is less
than the prediction probability from the left grid (pr = 0.9). Note that such a



Safety-Aware Hardening of 3D Object Detection Neural Network Systems 217

post-processing algorithm, its computation is not integrated the training and the
inference of neural networks.

Fig. 2. The output of the PIXOR network for a single grid; the red dot represents the
centering position of the grid. Both two grids have positive prediction on the existence
of the same vehicle. (Color figure online)

4 Safety Goals and the Proposed Safety Arguments

Fig. 3. Understanding the quality of
prediction. The area of ground truth
that is outside the buffer of the col-
lision avoidance algorithm imposes
risk of collision.

We define the safety goal by first considering
the critical area. Intuitively, a critical area
is an area where object detection should be
processed with care, as detection miss or an
object prediction of the wrong size may lead
to unsafe consequences. The precise defini-
tion of the critical area and the associated
quality attribute can be driven by multiple
factors such as the specification of labeling
quality, the capability of motion planners,
and the capability of maximum breaking. In
the following, we create the following sam-
ple specification and describe the underlying
rationale.

(S1: Critical area) The critical area are output grids 〈i, j〉 where i ∈ [0, γL]
and j ∈ [W

2β − γW , W
2β + γW ]. Figure 1 shows an example where critical area

(in light yellow) is in grid 〈i, j〉 with i ∈ [0, 9] and j ∈ [3, 8].
(S2: Demonstrate no false negative in critical area) If there exists an

object in the critical area, it should be “detected”. The system may fail to
detect an object outside the critical area but there is no immediate danger
(such as hitting an object). The meaning of “detected” is detailed as follows:
the predicted bounding box (of the vehicle) should deviate from the ground
truth with a fixed tolerance. In later sections, we provide the mathematical
formulation to quantify the meaning of tolerance in prediction.
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– The rationale is that we assume that the collision avoidance algorithm
takes a fixed buffer in its planning, and it fully trusts the output of the
object detection. Therefore, any prediction that deviates from the ground
truth with an amount more than the tolerance can create the risk for
collision (see Fig. 3 for an illustration).

– The “if” condition in the specification implies that safety constraint is
only on false negatives (undetected objects) and is not on false positives
(ghost objects). In other words, reducing false positives is a performance
specification and (within the scope of this paper) is not considered as a
safety specification.2

(S3: High performance outside the critical area) For objects outside the
critical area, the prediction should achieve reasonable performance, but no
hard constraints are imposed.

Therefore, we employ two philosophies in designing the quality attributes for
object detection. Within the critical area, the quality attribute is safety-driven -
performance shall never sacrifice safety. This implies that a neural network that
creates tighter bounding boxes but may fail to detect an object in the critical
area is not allowed. Based on the specification, the training of neural networks
may reduce false positives that appeared inside the critical area, but it is only
a performance improvement. Outside the critical area, the quality attribute is
performance-driven - positives and false negatives are allowed for object detec-
tion outside the critical area. However, the training of neural networks may try
to reduce them. Lastly, in this example, we do not enforce perfection between the
prediction given input and the associated ground truth label. As demonstrated
in later sections, this is reflected by having a zero loss so long as the prediction
deviates from the ground truth by the tolerance.

Following the safety specification listed above, we are considering the follow-
ing safety arguments in the architecture design and post-processing to support
the key safety specification (S2). Note that the listed items are partial and can
be further expanded to create a stronger supporting argument.

(A1: Safety-aware loss function) The first argument is a careful definition
of a loss function that reflects the requirement listed above. In particular,
for critical and non-critical areas, different loss functions are applied.

(A2: Robust training for critical area) For generating predictions inside
the critical area, the second argument is to deploy specialized training mech-
anisms such that one has a theoretical guarantee on robust prediction over
data used in training, provided that the robust loss has dropped to zero.3

2 This paper targets automated driving systems (SAE J3016 level 3 and up); for ADAS
systems (SAE J3016 level 2) such as automatic emergency braking, false negatives
are less critical due to the driver taking ultimate control, but avoiding false positives
are considered to be safety-critical due to potential rear collision.

3 It is almost impossible to use standard loss functions while demonstrating zero loss,
as zero loss implies perfection between prediction and labels. Our robust training
and our defined robust loss can, as demonstrated in later sections, enable zero loss
(subject to parameters used) in practical applications.
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(A3: Conservative post-processing) For post-processing algorithms that
are independent of the neural network but crucial to the generated predic-
tion, they should act more conservatively in the critical area.

5 Architecture Design, Loss, and Post-processing

In this section, we detail how we extend the architecture of PIXOR to incorporate
a safety-aware loss function, to integrate a new post-processing algorithm, and
finally, to apply robust training techniques. Recall that PIXOR has a backbone
network gbackbone and a header network gheader. Intuitively, the backbone net-
work creates high-level features from high dimensional inputs, and the header
network produces predictions from high-level features.

Backbone network Header network
Point 
cloud

(fixed parameters)

(fixed parameters) 
Object detection for 
non-critical regionsPoint 

cloud Object detection for 
critical regions

Non-max-
suppression

Non-max-
suppression

Non-max-
inclusion

Neural network Post-processing

Object detection 

Fig. 4. Hardening a standard object detection network system (top) to a safety-aware
one that differentiates between critical and non-critical areas (down)

We illustrate the proposed network architecture and the associated post-
processing pipeline in Fig. 4. We start by training a standard PIXOR network as
a baseline model. It is tailored for optimal performance but is not safety-aware.
In the hardened neural network, we create two header networks gcritical and
gnon.critical, with both connected to the backbone network gbackbone. Parameters
in gbackbone are fixed, i.e., they are not subject to further change. gnon.critical is
used to perform object detection for the non-critical area, and gcritical is used
to perform object detection for the critical area. In this paper, we present two
variations to engineer gcritical together with their associated theoretical guaran-
tees. Lastly, for the critical area, a non-standard post-processing algorithm (non-
max-inclusion) is used rather than the standard non-max-suppression algorithm
which is used for non-critical areas.

(Engineering gnon.critical). For gnon.critical to perform object detection in non-
critical areas, it is created by taking gheader and subsequently, remove all neurons
in the final layer that generate predictions for critical areas. Naturally, such a
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header network can be used for making predictions that are outside the critical
area. We do not perform further training to change any learned parameters.

5.1 Post-processing Algorithm for the Critical Area (Addressing
A3)

For the post-processing in the critical area, we alternatively propose the non-
max-inclusion algorithm. The underlying idea is illustrated using Fig. 5, where a
PIXOR network generates the prediction of the same object on two adjacent grids.
Standard non-max-suppression (Fig. 5-b) picks the grid that produces the largest
prediction probability and suppresses other predictions with high intersection-
over-union (IoU); in Fig. 5-b the bounding box with probability equaling 0.89 is
suppressed. Nevertheless, as there is no ground truth in operation, it is uncertain
which bounding box is correct. Therefore, a conservative post-processing algo-
rithm should include both bounding boxes, as demonstrated in Fig. 5-c. Overall,
the non-max-inclusion algorithm proceeds as follows.

Fig. 5. Explaining non-max-inclusion

1. Sort all bounding boxes with their prediction probabilities (from high to low),
and store them to a list Lall. Remove all boxes whose probability is lower than
the class threshold α.

2. Remove from Lall the first bounding box B (i.e., the box with the highest
probability), and create a sub-list LB = {B} containing only B.

3. For each bounding box prediction B′ ∈ Lall, if the prediction B′ has high IoU
with the original bounding box B, remove B′ from Lall and add B′ to LB

and do not consider it afterwards.
4. Finally, build the final bounding box B̂ which contains all bounding boxes

of LB and use it as the final prediction for B.
5. Proceed to step 2 until Lall is empty.

5.2 Engineering gcritical - Variation 1 (Addressing A1)

In the following, we introduce the first variation for engineering gcritical address-
ing (A2), where we create gcritical by first taking gheader, followed by removing
all connections to final layer neurons that generate predictions for non-critical
areas. In contrast to gnon.critical, the parameters for weights and bias (from
gheader) will be further adjusted due to the newly introduced loss function.
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(Loss Function Inside the Critical Area). For a labeled data (in, lb) ∈ T , we need
to define the loss for every output grid 〈i, j〉 that is inside the critical area, and
the overall loss is the sum of loss from each grid. In particular, the loss function
shall reflect the safety specification:

– If in the ground truth, there exists a vehicle centered at output grid 〈i, j〉,
then the loss for output grid 〈i, j〉 is 0 so long as

• for the 1st output prediction, i.e., the predicted probability, it is greater
than class threshold α, as the post-processing algorithm uses α as the
threshold, and
• for the k-th output prediction where k > 1, the distance between the
output and the label is bounded by δk.

– If in the ground truth, there does not exist a vehicle centered at output grid
〈i, j〉, then loss for output grid 〈i, j〉 is 0 so long as

• the prediction probability is less than class threshold α, as for the post-
processing algorithm, it uses α as the threshold.

Definition 1. Let function dist(v, low, up) return the minimum distance between
value v to the interval [low, up]. That is, dist(v, low, up) := min(|v− low|, |v−up|).

The following definition of loss captures the above mentioned concept.

Definition 2. Given (in, lb) ∈ T , define the loss between the prediction out :=
f (n)(in) and the ground truth lb at output grid 〈i, j〉 to be

loss〈i,j〉(out, lb) :=

{
dist(out〈i,j,1〉, α,∞) + η if lb〈i,j,1〉 = 1
dist(out〈i,j,1〉,−∞, α) + η otherwise (lb〈i,j,1〉 = 0)

where η :=
∑7

k=2 dist(out〈i,j,k〉, lb〈i,j,k〉 − δk, lb〈i,j,k〉 + δk)

At the end of this section, we provide technical details on how to implement the
loss function using state-of-the-art machine learning framework PyTorch.

(Connecting Zero Loss with Buffer Size). To avoid scenarios shown in Fig. 3,
the following lemma provides a conservative method to enlarge the predicted
bounding box, such that the enlarged bounding box guarantees to contain the
ground truth bounding box so long as the computed loss value loss〈i,j〉(out, lb)
equals 0.

Lemma 1. For the labelled data (in, lb) ∈ T , given out := f (n)(in), let θ be the
angle produced by out〈i,j,2〉 and out〈i,j,3〉. If loss〈i,j〉(out, lb) = 0 and if lb〈i,j,1〉 = 1,
then enlarging the prediction bounding box by

– enlarging the predicted width with d + dw

– enlarging the predicted length with d + dl
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guarantees to contain the vehicle bounding box from label lb at grid 〈i, j〉, where
d, dl and dw need to satisfy the following:

– d >
√

(δ4)2 + (δ5)2,
– dl > maxα∈[−κ,κ]

1
2 (10out〈i,j,6〉+δ6 sinα + 10out〈i,j,7〉+δ7 cos α − 10out〈i,j,7〉),

– dw > maxα∈[−κ,κ]
1
2 (10out〈i,j,6〉+δ6 cos α + 10out〈i,j,7〉+δ7 sinα − 10out〈i,j,6〉),

and the interval [−κ, κ] used in dl and dw satisfies the following constraints:

∀α ∈ [
−π

2
,
π

2
] : (| cos(θ) − cos(θ + α)| ≤ δ2 ∧ | sin(θ) − sin(θ + α)| ≤ δ3)

→ α ∈ [−κ, κ] (1)

A conservative computation of dl and dw independent of the generated pre-
diction can be done by further assuming the maximum length and width of a
vehicle for the observed output, e.g., a vehicle can have at most 6 m in length
(10out〈i,j,7〉 ≤ 6) and 2.5 m in width (10out〈i,j,6〉 ≤ 2.5); the assumptions shall be
monitored in run-time to check if one encounters prediction that generates larger
vehicle bounding boxes. As δ2, . . . , δ7 are constants, and by setting [−κ, κ] to be
a constant interval (which is related to the value of δ2 and δ3)4, the minimum
value for dl and dw can be computed using numerical approximation solvers such
as Mathematica or Sage.

(Connecting the Prediction and the Post-processing Algorithm). As a conse-
quence, given (in, lb) ∈ T , provided that loss〈i,j〉(out, lb) = 0 and lb〈i,j,1〉 = 1,
one ensures the following:

1. By enlarging the bounding box created from the prediction using Lemma 1,
the enlarged bounding box is guaranteed to contain the bounding box created
by the label.

2. The non-max-inclusion algorithm never removes any bounding box with pre-
diction probability smaller than α,

Therefore, the resulting list of bounding boxes after post-processing is guaranteed
to have one bounding box that completely contains the ground truth. This implies
that situation in Fig. 3 does not occur in (in, lb).

4 The interval [−κ, κ] is essentially a conservative upper bound on the deviated angle
between prediction and the ground truth, where their associated sine and cosine
value differences are bounded by δ2 and δ3. As an example, if between the predicted
angle and the ground truth, we only allow the sine and cosine value to only differ by
at most 0.1 (i.e., δ2 = δ3 = 0.1), it is easy to derive that κ can be conservatively set
to π

18
, i.e., (10◦), rather than the trivial value π

2
. This is because an angle difference

of 10◦ can already make sine and cosine value differ by 0.15, thereby creating non-
zero loss. Therefore, conservatively setting [−κ, κ] to be [− π

18
, π
18

] in computing dl

and dw surely covers all possible angle deviation constrained by zero loss.
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(Problems in Using Standard Post-processing Algorithm). Notice that the above
mentioned guarantee does not hold when replacing non-max-inclusion with non-
max-suppression, as the enlarged bounding box from the prediction at 〈i, j〉
(which has the guarantee of containing the ground truth) can be removed, so
long as there exists another bounding box from a nearby output grid 〈i′, j′〉 that
(i) has higher predicted probability value (i.e., out〈i′,j′,1〉 ≥ out〈i,j,1〉) and (ii)
has a huge area overlap with the one from grid 〈i, j〉.

5.3 Engineering gcritical - Variation 2 (Addressing A1 and A2)

We propose an improvement for engineering gcritical which considers feature-
level robustness, thereby also addressing A2. The underlying idea is illustrated
in Fig. 6, where parameters to be learned are the same between the first varia-
tion and the second variation. The difference lies in how values are propagated
in training (value propagation in variation 1 versus bound propagation in varia-
tion 2) and in how the loss is computed (loss accounting tolerance in variation 1
versus symbolic loss accounting tolerance in variation 2).

Fig. 6. Introducing feature-level perturbation in engineering gcritical

– (First layer in gcritical) For every neuron in gcritical receiving values pro-
duced from the backbone network, we require that it takes an additional
input parameter Ξ ≥ 0 that characterizes the maximum amount of per-
turbation, and subsequently computes a conservative bound accounting all
possible perturbation. Let n be the starting layer index of gcritical. Dur-
ing training, we require neuron gn

j to compute, subject to the condition
−Ξ ≤ ξ1, . . . , ξd(n−1) ≤ Ξ, values lowerbn

j and upperbn
j where
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• lowerbn
j ≤ min ρn

j (
∑d(n−1)

i=1 Wn
ji(g

(n−1)
i (in) + ξi) + bn

j ) and

• upperbn
j ≥ max ρn

j (
∑d(n−1)

i=1 Wn
ji(g

(n−1)
i (in) + ξi) + bn

j ).
In other words, the interval [lowerbn

j , upperbn
j ] acts as a sound over-

approximation over all possible computed values by taking input g
(n−1)
i (in)

and by having it boundedly perturbed.
– (Other layers in gcritical) For other layers, during training, a neuron takes

the bound computed by the previous layer and computes again a sound over-
approximation over possible outputs. In other words, during training, the j-th
neuron at layer n′ (n′ > n) computes lowerbn′

j and upperbn′
j such that

• lowerbn′
j ≤ min ρn′

j (
∑d(n′−1)

i=1 Wn
ji v

(n′−1)
i + bn′

j ) and

• upperbn′
j ≥ max ρn′

j (
∑d(n′−1)

i=1 Wn
ji v

(n′−1)
i + bn′

j ),

where for i ∈ 1, . . . , d(n′−1), lowerb
n′−1
i ≤ v

(n′−1)
i ≤ upperbn′−1

i .

Here we omit technical details, but one can implement above mentioned
bound computation in state-of-the-art ML training framework using abstract
interpretation techniques such as dataflow analysis [3]. Using dataflow analysis,
under Ξ = 0 the computation turns exact, meaning that the lower-bound and
the upper-bound should collide, i.e., lowerbn′

j = upperbn′
j . In the rest of the paper,

we always assume that Assumption 1 holds. This implies that during inference,
one may set Ξ to 0 and can use the computed lower-bound as the prediction.

Assumption 1. Assume that when Ξ = 0, the computation of lowerbn
j , upperbn

j ,
lowerbn′

j , upperbn′
j for every input in ∈ R

d0 is exact, i.e., lowerbn
j = upperbn

j and
lowerbn′

j = upperbn′
j .

(Characterizing Robust Loss). During training, as each output is no longer a sin-
gle value but a bound incorporating the effect of perturbation, the loss function
should be adjusted accordingly. For simplifying the notation, for each output
at grid indexed 〈i, j〉, we add another dimension in the front to indicate the
lower and the upper bound. That is, use out〈1,i,j〉 and out〈2,i,j〉 for indicating the
computed lower- and upper-bound at grid 〈i, j〉.

Definition 3. At output grid 〈i, j〉, define the robust loss between the range of
possible values out (computed using perturbation bound Ξ and the input in) and
the ground truth lb to be

robust loss〈i,j〉(out, lb) :=

{
dist(out〈1,i,j,1〉, α,∞) + ηl+ηu

2 if lb〈i,j,1〉 = 1
dist(out〈2,i,j,1〉,−∞, α) + ηl+ηu

2 otherwise (lb〈i,j,1〉 = 0)

where

– ηl :=
∑7

k=2 dist(out〈1,i,j,k〉, lb〈i,j,k〉 − δk, lb〈i,j,k〉 + δk) and
– ηu :=

∑7
k=2 dist(out〈2,i,j,k〉, lb〈i,j,k〉 − δk, lb〈i,j,k〉 + δk)
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The rationale for the design of robust loss is as follows: If the ground truth
indicates that there exists an object at grid 〈i, j〉, then we hope that any input
under perturbation should still reports the existence of that object. This is char-
acterized by the probability lower-bound out〈1,i,j,1〉 being larger than the class
threshold α. On the other hand, if the ground truth states that no object exists
at grid 〈i, j〉, then all possible input perturbation can report absence, so long
when the probability upper-bound out〈2,i,j,1〉 is less than the class threshold α.
Finally, when ηl and ηu are both 0, both the lower-bound and the upper-bound
due to perturbation are within tolerance. In other words, the perturbation never
leads to a prediction that exceeds the label by tolerance.

Under Assumption 1, robust loss〈i,j〉(out, lb) can be viewed as a generalization
of loss〈i,j〉(out, lb): When Ξ = 0, computing robust loss〈i,j〉(out, lb) essentially
computes the same value of loss〈i,j〉(out, lb) due to the colliding lower- and upper-
bounds (out〈1,i,j,k〉 = out〈2,i,j,k〉) making ηl = ηu.

Finally, given (in, lb) ∈ T , Lemma 2 (implicitly yet mathematically) charac-
terizes the allowed perturbation on in to maintain the prediction under tolerance.
If the symbolic loss at grid 〈i, j〉 equals zero and the label indicates the existence
of an object at grid 〈i, j〉, then any input in′ that are close to in (subject to
Eq. 2) should also positively predict the existence of an object (i.e., the first
output should be larger than α). The result can also be combined with Lemma 1
to avoid the situation illustrated in Fig. 3.

Table 1. Implementing the loss function

Function on single
input

Batched implementation in PyTorch

dist(v, low, up) torch.max(torch.clamp(low - v, min=0),

torch.clamp(v - up, min=0))

If lb=1 then x;
else (i.e., lb=0) y

torch.mul(lb, x) + torch.mul(1 - lb, y)

Lemma 2. Given (in, lb) ∈ T , under the condition robust loss〈i,j〉(out, lb) = 0
where out is computed using in with perturbation bound Ξ := ξ (ξ > 0) at layer n,
then for any in′ where the following condition holds,

∀m ∈ {1, . . . , d(n−1)} : |g(n−1)
m (in’) − g(n−1)

m (in)| ≤ ξ (2)

the prediction out′ that is computed using in′ without perturbation (i.e., using
inference with Ξ = 0), is guaranteed to have the following properties.

(a) If lb〈i,j,1〉 = 1 then out′〈1,i,j,1〉 ≥ α.
(b) If lb〈i,j,1〉 = 0 then out′〈1,i,j,1〉 ≤ α.
(c) For k ∈ {2, . . . , 7}, |out′〈1,i,j,k〉 − lb〈i,j,k〉| ≤ δk.
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(Implementing the Loss Function). As state-of-the-art neural network training
frameworks such as TensorFlow or Pytorch always operate on batches of data,
it is important that the previously mentioned loss functions can be implemented
with batch support. Overall, the loss function defined in Definition 2 and 3 is
a composition from two elements, namely (i) to apply Definition 1 and (ii) to
perform case split depending on the value of the label, which can only be 1 or 0.
Table 1 details how to implement these two elements in PyTorch.

6 Concluding Remarks

In this paper, we exemplified how to extend a state-of-the-art single-stage 3D
detector neural network (PIXOR) in a safety-aware fashion. By safety-aware, our
goal is to reflect the safety specification into the architectural design, the engi-
neering of the loss function, and the post-processing algorithm. Our proposed
hardening is compatible with standard training methods while being comple-
mentary to other critical activities in the safety engineering of machine learning
systems such as rigorous data collection, testing (for understanding the gener-
alizability) or interpretation (for understanding the decision of networks). In
our example, the tolerance concept integrated inside the loss function avoids
unrealistic-and-unreachable perfection in training, allows integrating the idea of
provable robustness, and finally, enables connecting the specification to capabil-
ities or limitations from other components such as motion planners.

For future work, we are interested in migrating the concept and the research
prototype into real systems, as well as reflecting other safety specifications into
the design of the architecture and the loss function. Yet another direction is
to consider how other architectures used in multi-view 3D reconstruction (e.g.,
MV3D network [2]) can also be made safety-aware.
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Abstract. The functions of an autonomous system can generally be
partitioned into those concerned with perception and those concerned
with action. Perception builds and maintains an internal model of the
world (i.e., the system’s environment) that is used to plan and execute
actions to accomplish a goal established by human supervisors.

Accordingly, assurance decomposes into two parts: a) ensuring that
the model is an accurate representation of the world as it changes through
time and b) ensuring that the actions are safe (and effective), given the
model. Both perception and action may employ AI, including machine
learning (ML), and these present challenges to assurance. However, it is
usually feasible to guard the actions with traditionally engineered and
assured monitors, and thereby ensure safety, given the model. Thus, the
model becomes the central focus for assurance.

We propose an architecture and methods to ensure the accuracy
of models derived from sensors whose interpretation uses AI and ML.
Rather than derive the model from sensors bottom-up, we reverse the
process and use the model to predict sensor interpretation. Small pre-
diction errors indicate the world is evolving as expected and the model
is updated accordingly. Large prediction errors indicate surprise, which
may be due to errors in sensing or interpretation, or unexpected changes
in the world (e.g., a pedestrian steps into the road). The former initiate
error masking or recovery, while the latter requires revision to the model.
Higher-level AI functions assist in diagnosis and execution of these tasks.

Although this two-level architecture where the lower level does “pre-
dictive processing” and the upper performs more reflective tasks, both
focused on maintenance of a world model, is derived by engineering con-
siderations, it also matches a widely accepted theory of human cognition.

1 Introduction

Autonomous systems—those, such as self-driving cars, that are capable of inde-
pendent decision making—typically use software that employs methods of Arti-
ficial Intelligence (AI) such as Machine Learning (ML) and time-constrained
best-efforts deduction. It is generally impossible to predict the behavior of such
software in all cases, as it can differ from case to case with little generalization.
Consequently, it is difficult to provide assurance to justify confidence that an
autonomous system is fit for use in critical contexts.
c© Springer Nature Switzerland AG 2020
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One primitive way to seek assurance is through a large number of realis-
tic tests. For self-driving cars, this is known as “collecting miles” and involves
real and simulated driving through many scenarios and over large distances [1].
However, studies including one by the RAND Corporation [2], show that the
quantity of testing required to substantiate acceptable safety is infeasibly vast,
ranging from hundreds of millions to tens of billions of test miles.

An alternative that is endorsed for unmanned aircraft [3], for example, is to
use conventional software as a monitor1 for autonomous functions. The monitor
is assured by conventional methods and overrides the autonomous software when
it detects a potential safety violation and substitutes safe alternative behavior.
Monitors have their own difficulties, however, but to examine them we first need
to review the architecture of autonomous systems.

The functions of an autonomous system generally can be partitioned into
those concerned with perception and those concerned with action. The purpose of
perception is to build a model of the system’s “world” (i.e., its environment) that
is used for planning and executing actions to accomplish a goal established by
human supervisors (e.g., the destination of a self-driving car) while maintaining
required invariants, such as safety. This is an instance of model-based control,
where the novelty is that the model is built with the aid of perception functions
that employ AI and ML.

The overall case for safety depends on both perception (how good is the model
of the world?) and action (how safe are the selected actions, given the model of
the world?). Although AI and ML may be needed to construct an action plan,
conventional software can check its safety, given a model of the world. Because it
operates in uncertain environments (e.g., a self-driving car does not know what
other road users may do) the checking software needs to consider all possibilities.
Mobileye promote a safety model of this kind: “Responsibility-Sensitive Safety”
(RSS) requires that the action software, and hence its monitor, should not be the
cause of an accident no matter what other vehicles do [4]. With these interpreta-
tions, the action functions of an autonomous system can be checked or monitored
by conventional software that can be assured by conventional means. However,
the monitors also need a model of the environment and this complicates the
argument for their assurance.

One possibility is that a monitor builds its own model, which might be
very crude. For example, the monitor for a self-driving car might comprise a
set of functions similar to those of an “Advanced Driver Assistance System”
(ADAS) for human drivers, including “Forward Collision Warning,” “Automatic
Emergency Braking,” “Blind Spot Warning,” and “Rear Cross Traffic Warning
and Rear Automatic Emergency Braking.” Here, the “models” are derived very
directly from radar and other sensors. These “last second” protections work well
for human drivers but might be less effective for the unpredictable failures of
autonomous systems. Furthermore, because they are unconnected to the larger
plan constructed by action software, these protections may sometimes prove
counterproductive. For example, the primary system might choose to give a

1 The terms “guard,” or “shield,” or “safety bag” are also used.
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cyclist or pedestrian a wide berth, but a “lane keeping assist” ADAS-like func-
tion operating as a monitor could override and steer back toward the cyclist or
walker.

We can distinguish “independent” vs. “integrated” monitors at this point.
An independent monitor uses its own sensing and decides whether or not to
intervene without much reference to the primary action system. In addition to
“last second” protections, a second function of an independent monitor could be
to check whether the primary system is operating within specified “Operational
Design Domains” (ODDs) [5]; these are circumstances, such as “on a freeway,
in daylight,” for which the system was designed and is considered safe. In both
cases, since it is performing different functions than the primary, it is plausible
that such a monitor could provide strong protection using only assured conven-
tional software in its sensing and interpretation (i.e., model-building) functions.
We endorse such monitors for “within ODD” and “last second” protection, but
prefer integrated monitors for overall assurance.

An integrated monitor evaluates the plan produced by action software, look-
ing several time units ahead. To do this, it needs a model of the world and this
model needs to resemble that of the primary system more than do the models
of independent monitors. If an integrated monitor builds its own model using
assured conventional software, then it seems this is likely to generate false alarms
as it will be less accurate than the ML-enabled model of the primary system,
or else it invites the question why the primary could not also use conventional
software. On the other hand, if the monitor itself uses AI and ML software then
we face the original problem of how this can be assured. And if the monitor does
use AI and ML software, then a case can be made that it should use some or all
of the same sensors and software as the primary system, because a redundant
system will be expensive yet surely the recipient of less development and vali-
dation resources than the primary system, and therefore less capable and less
trustworthy.

In the following, we will assume an integrated monitor that either uses the
same model as the primary system or uses much the same sensors and software
to build an alternative “shadow” model optimized for its different function. We
will refer to the model used by the monitor, whether it be the primary model or
its own specialized one, as the assured model because it is the focus for safety
and therefore the architecture of the system should be directed to ensuring its
accuracy. We call this “model-centered assurance” and it is the approach that
we advocate. If the assured and primary models are separate, they both will be
constructed and maintained in the way we describe below, but the details will
be adjusted for their different functions.

The next section develops the idea of model-centered assurance and its key
components: predictive processing and the dual-process architecture. Section 4
outlines the case for assurance, and Sect. 5 provides brief conclusions. The paper
provides neither mathematics nor a case study. We are grateful to the organizers
and reviewers for allowing us to present a purely conceptual paper. The under-
lying mathematics is well known in other fields and we provide references later;
we are working on a case study and hope to report soon.
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2 Model-Centered Assurance

If a world model is to be the focus for assurance, we need to consider the proper-
ties needed for safety, and the hazards to these. The intuitive property required
of the model is fidelity to the real world, at least insofar as required to plan safe
actions. In particular, if M is a model of world W, then any actions planned
and shown to be safe using M should be safe when executed in W. The inverse
need not be true; that is, there can be safe actions in the real world that do
not appear so in the model. Thus, the model does not need to be a strictly
accurate representation of the world: it can be conservative or, as we say, safely
approximate.

In the absence of monitors, the model could be expressed in the variables of
some latent space discovered by ML. But requirements for assurance monitors
will surely be expressed in naturalistic terms (“don’t hit a pedestrian”) and the
model must therefore represent these fairly directly. Hence, in model-centered
assurance, the model must be a naturalistic one. Beyond that, the content of the
model and submodels constructed by perception functions will be determined by
the system and its purpose and goals. For a self-driving car, the overall model will
represent something like an annotated map of its surroundings: it will include
the layout of the local roads and junctions, information about nearby vehicles
and pedestrians, locations of fixed objects (e.g., mailboxes), road signs and their
interpretation, traffic signals, and so on. It is a design choice whether there is
one model or a coordinated collection of submodels. A typical submodel is a list
of detected objects in the vicinity of the ego vehicle, giving the location, size,
velocity, type, and inferred intent of each; another might be an occupancy grid
(a discretized probabilistic 2D map, describing the occupancy of each “square”);
and another might be a representation of traffic lanes. Inputs from many different
sensors (e.g., GPS location and map data, odometry, lidar, radar, proximity
sensors, cameras etc.) will be interpreted and fused to create the world model
and its submodels. All of these data sources present challenges in interpretation
but we will focus on image data from cameras since this is the most widely
studied and discussed, and among the most challenging.

Lin and colleagues [6] outline a representative vision processing pipeline for
a self-driving car: image data from the cameras are fed in parallel to an object
detector and a localizer; the object detector discovers the objects of interest
around the vehicle, such as other vehicles, pedestrians, and traffic signals; the
detected objects are then passed to an object tracker that associates objects with
their past movements and predicts the future trajectories of moving objects [7];
in parallel, the localizer determines the location of the ego vehicle. Subsequently,
the object movement information from the object tracker and vehicle location
information from the localizer are combined and projected onto the same 2 or 3
dimensional coordinate space by a sensor fusion engine to create the model used
by the action functions.

The object detector is usually based on (semi) supervised learning using a
convolutional neural network. This is a deep learning neural network architecture
that typically comprises some layers of artificial neurons arranged to perform
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convolution, some to do pooling, and some fully connected. The number and
arrangement of layers of each type are determined by experiment and constitute
the developer’s “secret sauce.” During subsequent training, a vast number of
images are fed to the network together with correct (human generated) data on
the objects they contain. During the training process, the weights in the neural
network are adjusted until it detects objects with high accuracy and reliability.

Now although deep neural networks such as those employed in object detec-
tors are astonishingly effective at their tasks, we must heed Judea Pearl’s obser-
vation that at bottom all they are doing is extremely sophisticated curve fitting
[8]. We tune the network architecture and its weights so that training data is
detected and classified with high accuracy and reliability (but without “over-
fitting”) and we hope that live data is detected equally well. This hope has to
rest on the assumption that real world data is smooth in a way that matches
the implicit curve of the neural network. But the lesson from safety-critical sys-
tems is that their failures are often associated with unanticipated cases that are
discontinuous from their neighbors.

This concern is exemplified by so-called “adversarial examples” [9]. These are
typically minor modifications to an input image that are indiscernible to a human
observer but cause an image classifier to change its output, often drastically
and inappropriately. Masks have been developed that will cause misclassification
when overlayed on any image input to a given classifier, and there are universal
examples that will disrupt any classifier [10]. Furthermore, there are patterns
that can be applied to real world artifacts (e.g., small images that can be stuck
to traffic signs) that will cause them to be misread by an object classifier [11].
There is much work on detection and defense against such attacks but their
effectiveness is limited: for example, Carlini and Wagner [12] demonstrate that
ten different methods for detecting adversarial examples are easily bypassed.

In our opinion these concerns and defenses miss the true significance of adver-
sarial examples. Their significance is not that a classifier can be mislead by
carefully manipulated inputs, but that they demonstrate that classifications are
fragile: that is, for every correctly classified image, there may be several incor-
rectly classified ones just a few pixel changes away. And why wouldn’t this be,
when all that the learning-enabled components are doing is curve fitting? Shamir
and colleagues present an analysis that confirms and quantifies this interpreta-
tion [13], while Kilburtus and colleagues argue that this kind of “anti-causal”
learning via curve-fitting has inherent challenges in achieving generalization [14].

The inevitable conclusion is that although many learning-enabled systems
driven by neural networks exhibit amazing performance, it is reckless to assume
this performance is robust. These systems will always exhibit more failures than
can be tolerated in safety-critical systems and this cannot be fixed by adjust-
ments to the interpretation function because it derives from the fact that the
learning-enabled software is not interpreting the world in any meaningful sense,
but merely applying statistical correlation to patterns of pixels. The question
then is: can we locate these learning-enabled components in an architecture or
context where their failures can be detected and masked or tolerated?
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Some such methods attempt to assess “confidence” in the quality of the
current learning-enabled judgment. One way to do this is to estimate whether
the current input is similar to those encountered during training. Pimentel et al
review methods for doing this [15]. A popular modern method uses a variational
autoencoder [16] to learn the training data distribution and to compress it to
a smaller “latent” space, from which a decoder can reconstruct the original
input. In live operation, encoding and decoding the current input will usually
result in an image close to the original if it is similar to the training data, and
distant if not. Measures such as “Mahalanobis distance” can be used to assess the
distance between an image and its reconstruction. Another approach attempts
to locate the portions of the input that most directly contribute to the current
judgment and checks that these are related to the feature concerned [17]. We
consider it prudent to employ methods such as these but, as with defenses against
adversarial examples, we note that they can often be defeated by changes to a
few pixels and do not contribute greatly to assurance.

A different class of methods employs diversity and fault tolerance. All fault
tolerance is based on redundancy, but it requires more than mere replication.
For example, some of the best performing learning-enabled systems for image
and speech recognition employ “ensembles” in which several different systems
cooperate or compete to generate results [18]. However, while this approach can
improve already impressive behavior, it does not deliver assurance—because we
have no reason to suppose that failures of the component systems are indepen-
dent, and no reason to trust any individual system.

However, although diverse interpretations of the same sensors may not fail
independently, it is plausible that different sensors, particularly different kinds
of sensors, may do so. Hence, sensor fusion over different kinds of sensor may be
able to detect or mask some failures, although this may not be straightforward
to achieve, as illustrated by the fatal accident between an Uber self-driving car
and a pedestrian in Arizona on 18th March 2018 [19]. The Uber car used three
sensor systems to build a simple object tracker model (recall Lin’s vision process-
ing pipeline [6]): cameras, radars, and lidar. In each of these sensor systems, its
own object detector indicates the position of each detected object and attempts
to classify it as, for example, a vehicle, a pedestrian, a bicycle, or other. The
object tracker fuses these inputs using a “prioritization schema that promotes
certain tracking methods over others, and is also dependent on the recency of
the observation” [19, page 8]. In the case of the Arizona crash, this resulted
in a “flickering” identification of the victim as the sensor systems’ own classi-
fiers changed their identifications, and as fusion performed by the object tracker
preferred first one sensor system, then another, as listed below [19, Table 1].

– 5.6 s before impact, victim classified as vehicle, by radar
– 5.2 s before impact, victim classified as other, by lidar
– 4.2 s before impact, victim classified as vehicle, by lidar
– Between 3.8 and 2.7 s before impact,

classification alternated between vehicle and other, by lidar
– 2.6 s before impact, victim classified as bicycle, by lidar
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– 1.5 s before impact, victim classified as unknown, by lidar
– 1.2 s before impact, victim classified as bicycle, by lidar

The deeper harm of this “flickering” identification is that “if the perception
system changes the classification of a detected object, the tracking history of
that object is no longer considered when generating new trajectories” [19, page
8]. Consequently, the object tracker never established a trajectory for the victim
and the vehicle collided with her even though she had been detected in some
form or other for several seconds.

There are two related problems here: one is that the object tracker maintains
a rather impoverished model of the world, the other is that its method of sensor
fusion and model update pays no attention to the prior state of the model. The
purpose of perception in autonomous systems is to build a model that accurately
reflects the world; the model therefore encodes a lot more information than
does an individual sensor sample and we should be cautious about making large
updates to the model on the basis of such an individual sample.

The tenet of Model-Centered Assurance is that the model is the focus of
attention, and the goal of perception is to ensure that it is an accurate (or “safely
approximate”) representation of the world. When a sensor samples the world,
its interpretation software delivers some representation and we need to decide
how to incorporate this into the world model. On the one hand, the information
from the sensor is new but, on the other, its interpretation is possibly erroneous.
Furthermore, the model is the repository of much accumulated information, so
the method of model update must maintain its overall accuracy and coherence.

These considerations suggest a radical alternative to the traditional relation-
ship between sensors and model: instead of operating “bottom up,” we invert
this to derive a framework for perception known as predictive processing (PP).

2.1 Predictive Processing

The world causes the sense impressions that our sensors report, but standard
bottom-up methods of sensor interpretation attempt to reason backwards or
“anti-causally” from sense impressions to their causes. This is inherently fraught
with difficulty because many different configurations in the world can cause the
same sense impressions. The idea of predictive processing is to reason causally: if
we have an accurate model of the world, we can use it to predict the impressions
that the world will cause our sensors to perceive. This is valuable for several
reasons. The first is that it assists the lower levels of sensor interpretation (which
may still operate anti-causally) by telling them what to look for.

Consider the component of a car’s vision system concerned with detecting
traffic lanes. This can be accomplished by a computer vision algorithm (e.g.,
based on the Hough Transform [20]) that looks for more-or-less straight lines
painted on the road. A bottom-up approach will perform this algorithm afresh
as each camera frame is processed. But this is inefficient—the traffic lanes in the
current image frame are likely to be similar to those in the previous few frames
and we should surely use this to seed the search—and it is fragile, as missing



Model-Centered Assurance for Autonomous Systems 235

or scuffed lane markers might cause lanes to go undetected where they could be
detected if we knew where to look, or could even be extrapolated from previous
images. A better approach builds a model of the road and its traffic lanes and
projects this forward in time to guide the algorithm in its search for lanes in the
current image by predicting their location. The lanes found by the algorithm
will generally be very close to those predicted by the model, so the information
returned by the vision system to the system that maintains the model could be
just the difference between them: that is, the prediction error.

In general, there will be uncertainty in the world model. This might be repre-
sented as a collection of candidate models: for example, one model might suppose
that a detected object is a bicycle, another that it is a pedestrian, and we will
favor the one that has the least prediction error (bicycles generally go in the
same direction as the traffic, while pedestrians tend to go across it, so the two
models will predict different locations for the object in the next frame).

This is an example of “analysis by synthesis,” meaning that we formulate
hypotheses (i.e., candidate world models) and favor those whose (synthesized)
predictions match the sensed data. Enabling this approach is the second reason
why PP is so valuable. In practical applications, we need to consider the level of
the predictions concerned: do we use the world model to synthesize the raw data
(e.g., pixels) that we predict the sensor will detect (which can be done using
autoencoders), or do we target some higher level of its local interpretation (e.g.,
detected objects)? The best choice is a topic for experimental research, but we
would expect a level of representation comparable to that produced by an object
detector to be suitable.

Rather than (or in addition to) multiple candidate models, we could use prob-
ability distributions to represent uncertainty about model parameters. Imple-
mentations of this approach often employ Bayesian methods, although there are
many variations [21]. The component that maintains the model will then send its
predictions to the vision (or other sensor) component as a prior distribution and
the vision system will return a posterior one. This kind of Bayesian inference
typically generates intractable integrals, so implementations employ methods
known as Variational Bayes that turn the problem into iterative optimization
of the posterior models to minimize prediction error [16].

There is strong similarity between this approach and a Kalman Filter. As
here, a Kalman filter maintains a model of the system state, which is the esti-
mated value of each of its state variables together with their estimated accuracies,
and predicts their values at the next timestep. Sensors sample these values, and
the state variables are updated in a way that favors their predicted values when
these are believed to have high accuracy, and the sensor values otherwise.

In a further, and perhaps surprising similarity, the top-down approach is
widely believed to be the way perception works in human (and other) brains,
as first proposed by Helmholtz in the 1860s [22]. Predictive Processing [23], also
known as predictive coding [24] and predictive error minimization [25], posits
that the brain builds models of its environment and uses these to predict its
sensory input, and that much of its activity can be seen as (an approximation
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to) iterative Bayesian optimization of its models to minimize prediction error. PP
has prior “predictions” flowing from models down to sense organs and Bayesian
“corrections” flowing back up that cause the posterior models to track reality.
(“Free Energy” [26] is a more all-encompassing theory that includes actions:
the brain “predicts” that the hand, say, is in a certain place and to minimize
prediction error the hand actually moves there.) This is consistent with the fact
that the brain has more neural pathways going from upper to lower levels than
vice versa: models and predictions flow down, and only corrections flow up.

As we noted, PP can be seen as extending the idea of Kalman filtering from
classical representations of state (i.e., a set of continuous variables, as in control
theory) to more complex models, where we also have representations of object
“type” and “intent” and so on. Thus, fields as varied as neuroscience, control
theory, signal processing, and sensor fusion all employ methods similar to PP,
but under different names and derived by different histories.

The model-centered architecture is portrayed in Fig. 1 (ignore the dark pink
box on the right labeled “Level 2 model refinement” for the time being). The
black arrows from “Level 1 model construction” to sensors and their low-level
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Fig. 1. Primary/monitor two-level architecture with predictive processing. (Color
figure online)
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interpretation indicate the top-down predictions of PP (inverted in the picture),
while red arrows indicate prediction errors returned to model construction. If the
assured model is separate from the primary model, then it and its mechanisms
are indicated by the “shadows” behind the corresponding primaries.

The third and perhaps most crucial benefit of PP in a model-centered app-
roach to assured autonomy is that prediction error provides a continuous assess-
ment of the accuracy of the model and a systematic purchase on situations that
warrant further investigation. Small prediction errors indicate that all is pro-
ceeding satisfactorily (we will see later that this may not be so and we need
to separately verify the absence of systemic misinterpretations, but the basic
inference is correct). Large prediction errors constitute surprise and indicate
a failure of some kind, a flaw in the model, or an unexpected development in
the world. Prediction error thus provides a single, uniform method for runtime
verification and failure detection, so that assurance for the autonomous system
is itself autonomous. For example, disappearance of previously detected objects
because they are occluded by an overturned truck will trigger surprise even if
our object detector fails to recognize the truck (cf. Tesla crash, Taiwan 1 Jun 20).

There are just three possible responses to surprise: we can adjust the sen-
sor(s), adjust the model, or adjust the world. Selection and coordination among
these is best performed by a separate function that has access to knowledge and
more comprehensive methods for reasoning about the world, as we now describe.

2.2 Dual-Process Architecture

Suppose we are driving on a freeway when the object detector of a camera
indicates a bicycle in front of us. In fact, what has been seen is a picture of a
bicycle painted on the rear of a van. The object detector has seen the van in
earlier frames and correctly labeled it but, now that we are closer, it is able to
resolve the picture and labels the object as a bicycle, or perhaps as a van with
confidence x and bicycle with confidence y. PP will have predicted it is definitely
a van, so we have a large prediction error and need to decide how to proceed.

Now, we are on a freeway and the local “Laws and Rules of the Road”
specify that bicycles are not allowed on freeways (this is not always so, but we
will ignore special cases for the purpose of illustration). If our object detector
had access to this information it could make the inference that the detected
object cannot be a bicycle and must be a van. Such knowledge and methods of
inference seem a useful augmentation to model-centered assurance—the more the
system knows, the less it needs to sense—but pose the question how they should
be incorporated into the architecture. The capabilities seem too general and
universal to be added to the interpretation functions of individual sensors, so it
seems they could be added to the model construction function. However, we now
think of model construction as a predictive processing loop that sends predictions
to sensors and updates the model according to prediction errors. The higher
level knowledge and inferences that we now contemplate seem asynchronous to
this loop and more focused on analysis and augmentation of the world model
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and the response to surprise. Accordingly, we propose that these capabilities—
essentially, the deductive AI functions of the system—are located in a separate
“model refinement” function that is shown as dark pink in Fig. 1. Furthermore,
we suggest that it is useful to think of the two methods of model update as
occurring on two levels: basic (PP) model construction at Level 1, and more
inferential refinement at the higher Level 2.

Just as predictive processing has independent engineering justification, but
also happens to coincide with a current theory of human cognition, so the two-
level architecture coincides with a related “dual-process” theory [27,28], recently
popularized by Kahneman as separate “fast and slow” systems of human thought
[29]. In human cognition, System 1 is unconscious, fast, and specialized for rou-
tine tasks; System 2 is conscious, slow, easily fatigued, and capable of deliber-
ation and reasoning—it is what we mean by “thinking.” These correspond to
Levels 1 and 2 in the architecture of Fig. 1.

We have implicitly suggested that Level 1 Model Construction maintains a
single assured world model (that may have several components) and that Level 2
Model Refinement embellishes this. However, it is believed that humans maintain
a hierarchy of models [24,26] and this seems a good approach for autonomous
systems as well. The idea is that a PP loop operates between each adjacent pair
(in the hierarchy) of models, so that the lower level is like a sensor for the upper
level, with priority and update frequency determined by the size of prediction
errors. We will not pursue this more elaborate architecture here, but it seems an
interesting prospect for future consideration.

In general, the purpose of Level 2 Model Refinement is to respond to and
minimize “surprise” and one way to approach the latter is to augment the world
model with additional information that encodes “situation awareness.” This can
be the result of hypothetical and counterfactual reasoning, so that things not
seen but “that might be there” are explicitly added to the model as “ghosts”
(objects with low probability). For example, by reasoning about lines of sight and
occluded vision, we could deduce that “we will be unable to see any vehicle that
might be behind that truck.” We could then add a ghost vehicle to the occupancy
grid location behind the truck and this will influence the action functions. When
the truck no longer occludes our vision, sensors will confirm or deny presence of
the ghost, but neither outcome will constitute a surprise or a hazard because the
action functions will not have committed to a choice that would be dangerous
for either outcome. Dually, we might determine that a detected vehicle may be
unable to see us because a truck is in the way, and this can be incorporated in the
model as increased uncertainty on the likely motions of the vehicle concerned.

In another example, detection of many brake lights up ahead can be used to
infer some kind of problem and this will be represented as increased uncertainty
in the world model. In this way, what might otherwise be the surprising mani-
festation of an unanticipated situation will instead develop as gradual changes
in uncertainty or the resolution of ghosts into real objects. Observe that these
refinements to the world model make it more conservative: that is, they reduce
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the options available to action functions, so that faults in this type of Level 2
reasoning cannot make the world model less safe.

Level 2 aims to minimize surprise but, when surprise happens, it must deal
with it. We noted earlier that there are three possible responses: we can adjust
the sensors, the model, or the world (or a combination of these). When surprise
takes the form of a large prediction error from one sensor, or group of similar sen-
sors, it is reasonable to assume it is a temporary glich in sensing (e.g., reflections
confusing radar) or interpretation (e.g., adversarial-type inputs) and to ignore
the afflicted sensor(s) for a while and trust to local continuity in the world, or
diversity and redundancy among other sensors, to maintain an accurate model.

Alternatively, analysis may suggest that prediction errors are due to a persis-
tent cause in the external world, such as cameras dazzled by the sun. A suitable
response might then be to change lanes to get in the shade of a nearby truck—in
other words, to make a change in the world (specifically, our location in it).

If prediction errors persist, or afflict an entire class of sensor, then it may
be a hardware or system problem—in which case Level 2 may coordinate with
the fault tolerance functions of the underlying platform—or it may be some
environmental challenge, such as fog. In this situation, lane-detection by cameras
may fail, but Level 2 may be able to substitute some alternative method of
“sensing” for model update, such as inferring location of the traffic lanes from
the motions of neighboring cars as revealed by radar and proximity sensors.

When many sensors register large prediction errors, then the cause of the
surprise is likely to be that the world did not evolve as the model predicted, and
the appropriate response is to make changes in the model so that it conforms to
information from the sensors. In extreme cases, this may require rebuilding the
model from scratch, using some frames of bottom-up anti-causal interpretation.

We have motivated and introduced the two key aspects of our model-centered
approach for autonomous systems: predictive processing and dual-process archi-
tecture. We now develop an outline assurance argument.

3 Toward an Assurance Argument

In routine operation, an autonomous system employing our model-centered app-
roach will maintain a comprehensive naturalistic model of the world, possibly
comprised of several components including (e.g., for cars) a detected objects
list and an occupancy grid. The model is updated in an automated and regular
manner using predictive processing, which provides continuous feedback on the
quality of the model and available sensor data. For each sensor, the system will
generate a prediction for the interpretation of its next frame. This can allow the
sensor to focus its resources and interpretation in the most productive manner.
Each sensor will report its prediction error; a small error indicates the model
is aligned with the world and will cause a modest update to the model; a large
error indicates a “surprise” that could be due to either a fault in the sensor or its
interpretation, a flaw in the model, or an unexpected development in the world.

The most basic branch in an assurance case for this architecture is to be
sure that small prediction errors really do guarantee that the model is a safely
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approximate representation of the world. The primary hazard to this claim is
that the system’s perception of the world could be systematically distorted—a
hallucination. For example it could be blind to red cars: sensors will report no
red cars, leading to construction of a world model without red cars; this will
generate predictions lacking red cars that are confirmed by the sensors. So all
seems well—until we collide with a red car, or are otherwise surprised by their
existence. We refer to these perception faults as systemic and their characteristic
is that they occur in some significant region of the input space and for significant
periods of time, leading to misperception of the world. Other systemic faults
might concern measurement rather than existence: for example, a sensor might
displace objects 10 ft to the left or miscalculate bounding boxes by 10%; and
others might concern identification, such as misreading stop signs as something
else.

Systemic faults must be excluded or eliminated during development. A rea-
sonable way to detect residual systemic faults—and to provide evidence for their
absence—is by testing, and a plausible way to perform this is in simulation. We
generate a simulated model of the world and a rendering of it is presented to the
sensor interpretation and model construction functions under test; the model
they construct is then compared to the original. A few million miles of simu-
lated travel through representative scenarios [1] with some injection of degrada-
tion (e.g., rain and fog) into the rendering, could provide reasonable assurance
for the absence of systemic faults. Note that this is not the same as “collecting
miles” as we are looking only for systemic faults, whereas those who collect miles
are also seeking exceptionally rare “corner case” and “fat tail” failures.

Assuming adequate evidence that small prediction errors guarantee the model
is safely approximate, the next major branch in the assurance case is to show
that the responses to large prediction errors (i.e., surprise) maintain the property.
This divides into case analysis over the causes of surprise. First is a hardware
fault of some kind, and we assume that this is safely handled by the underlying
fault-tolerant platform (possibly in coordination with Level 2 model refinement).

Next is some fault in sensor interpretation or model construction that is local-
ized in space and time (i.e., not systemic); we call these local perception faults
and rely on assumed local continuity of the world to justify freezing or extrap-
olating afflicted values for a few frames; alternatively, if redundant sensors are
available, we assume failure independence and favor these. Failure independence
seems a plausible assumption, especially for sensors using different phenomena.

When prediction errors persist for more than a few frames, or are shared by
multiple sensors, then we have a genuine surprise (the model is inaccurate, or
the world has not evolved as expected) and Level 2 functions will orchestrate
repair or regeneration of the model, or take action in the world, as described
in the previous section. We will not drive this sketch of an assurance case into
these details as they will be specific to each system. However, we note that
the primary purpose of the AI functions at Level 2 is to resolve uncertainties
in sensor interpretation (e.g., the bicycle/van example mentioned earlier), and
to reduce future surprise through augmentations to the model that anticipate
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its evolution and promote situation awareness. These activities all increase the
conservatism of the model and can only enhance the safety of its approximation
to the real world.

This safety argument is quite different than could be constructed for tra-
ditional bottom-up sensor interpretation and fusion: predictive processing pro-
vides an intrinsic structure to the case analysis that suggests the argument can
be made deductive [30]. Of course, much remains to be investigated, including a
search for defeaters and quantifiable assessment of confidence and risks. A crit-
ical next step will be to assess confidence that surprises are always generated
when they should be, which might be done by fault injection (e.g., perturbing
interpretation of sensors, or the modeled world presented to them) in simulation.

4 Conclusion

We have described an architecture for autonomous systems that promotes their
safety and assurance. The focus of the architecture is the “safely approximate”
accuracy of an assured world model maintained by the perception functions.
Given this model, the action functions can be guarded by monitors driven by
traditional software and assured in traditional ways.

In the proposed architecture, sensor interpretation is driven top-down from
the model—the reverse of the usual direction—using predictive processing. Small
prediction errors confirm accuracy of the model and sensor interpretation, given
that testing confirms absence of systemic faults. Large prediction errors indicate
either a fault in sensor interpretation, or a departure between the model and
the world (a surprise). The uniformity of prediction error as the single basis for
runtime assurance and fault detection means that assurance is itself autonomous.
AI functions located at a second level provide situation awareness and other
measures to reduce future surprise and to deal with it when it occurs.

Although this dual-process architecture with predictive processing is derived
by engineering considerations, it corresponds with current theories of human
cognition and suggests fruitful comparisons. Mathematical formulations of pre-
dictive processing are well-developed in cognitive science [26] and in machine
learning, where it is associated with “generative” and “variational” methods
[16].

In current work, we are performing experimental evaluations of the approach
and plan to report our experience and propose key challenges.
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Abstract. Increasingly sophisticated mathematical modelling processes
from Machine Learning are being used to analyse complex data. How-
ever, the performance and explainability of these models within prac-
tical critical systems requires a rigorous and continuous verification of
their safe utilisation. Working towards addressing this challenge, this
paper presents a principled novel safety argument framework for critical
systems that utilise deep neural networks. The approach allows various
forms of predictions, e.g., future reliability of passing some demands, or
confidence on a required reliability level. It is supported by a Bayesian
analysis using operational data and the recent verification and validation
techniques for deep learning. The prediction is conservative – it starts
with partial prior knowledge obtained from lifecycle activities and then
determines the worst-case prediction. Open challenges are also identified.

Keywords: Safety cases · Quantitative claims · Reliability claims ·
Deep learning verification · Assurance arguments · Safe AI · Bayesian
inference

1 Introduction

Deep learning (DL) has been applied broadly in industrial sectors including auto-
motive, healthcare, aviation and finance. To fully exploit the potential offered by
DL, there is an urgent need to develop approaches to their certification in safety
critical applications. For traditional systems, safety analysis has aided engineers
in arguing that the system is sufficiently safe. However, the deployment of DL in
critical systems requires a thorough revisit of that analysis to reflect the novel
characteristics of Machine Learning (ML) in general [2,10,27].

Compared with traditional systems, the behaviour of learning-enabled sys-
tems is much harder to predict, due to, inter alia, their “black-box” nature
and the lack of traceable functional requirements of their DL components. The
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“black-box” nature hinders the human operators in understanding the DL and
makes it hard to predict the system behaviour when faced with new data. The
lack of explicit requirement traceability through to code implementation is only
partially offset by learning from a dataset, which at best provides an incom-
plete description of the problem. These characteristics of DL increase apparent
non-determinism [25], which on the one hand emphasises the role of probabilistic
measures in capturing uncertainty, but on the other hand makes it notoriously
hard to estimate the probabilities (and also the consequences) of critical failures.

Recent progress has been made to support the Verification and Validation
(V&V) of DL, e.g., [23,47]. Although these methods may provide evidence to
support low-level claims, e.g., the local robustness of a deep neural network
(DNN) on a given input, they are insufficient by themselves to justify overall
system safety claims. Here, we present a safety case framework for DL mod-
els which may in turn support higher-level system safety arguments. We focus
on DNNs that have been widely deployed as, e.g., perception/control units of
autonomous systems. Due to the page limit, we also confine the framework to
DNNs that are fixed in the operation; this can be extended for online learning
DNNs in future.

We consider safety-related properties including reliability, robustness, inter-
pretability, fairness [6], and privacy [1]. In particular, we emphasise the assess-
ment of DNN generalisation error (in terms of inaccuracy), as a major reliability
measure, throughout our safety case. We build arguments in two steps. The first
is to provide initial confidence that the DNN’s generalisation error is bounded,
through the assurance activities conducted at each stage of its lifecycle, e.g.,
formal verification on the DNN robustness. The second step is to adopt proven-
in-use/field-testing arguments to boost the confidence and check whether the
DNN is indeed sufficiently safe for the risk associated with its use in the system.

The second step above is done in a statistically principled way via Conser-
vative Bayesian Inference (CBI) [8,46,49]. CBI requires only limited and partial
prior knowledge of reliability, which differs from normal Bayesian analysis that
usually assumes a complete prior distribution on the failure rate. This has a
unique advantage: partial prior knowledge is more convincing (i.e. constitutes a
more realistic claim) and easier to obtain, while complete prior distributions usu-
ally require extra assumptions and introduces optimistic bias. CBI allows many
forms of prediction, e.g., posterior expected failure rate [8], future reliability
of passing some demands [46] or a posterior confidence on a required reliabil-
ity bound [49]. Importantly, CBI guarantees conservative outcomes: it finds the
worst-case prior distribution yielding, say, a maximised posterior expected fail-
ure rate, and satisfying the partial knowledge. We are aware that there are other
extant dangerous pitfalls in safety arguments [25,27], thus we also identify open
challenges in our proposed framework and map them onto on-going research.

The key contributions of this work are:
a) A very first safety case framework for DNNs that mainly concerns quan-

titative claims based on structured heterogeneous safety arguments.
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b) An initial idea of mapping DNN lifecycle activities to the reduction of
decomposed DNN generalisation error that used as a primary reliability measure.

c) Identification of open challenges in building safety arguments for quanti-
tative claims, and mapping them onto on-going research of potential solutions.

Next, we present preliminaries. Sect. 3 provides top-level argument, and
Sect. 4 presents how CBI approach assures reliability. Other safety related prop-
erties are discussed in Sect. 5. We discuss related work in Sect. 6 and conclude
in Sect. 7.

2 Preliminaries

2.1 Safety Cases

A safety case is a comprehensive, defensible, and valid justification of the safety
of a system for a given application in a defined operating environment, thus it is
a means to provide the grounds for confidence and to assist decision making in
certification [12]. Early research in safety cases mainly focus on their formulation
in terms of claims, arguments and evidence elements. The two most popular
notations are CAE [12] and GSN [26]. In this paper, we choose the latter to
present our safety case framework.

Fig. 1. The GSN core elements and an example of using GSN

Figure 1 shows the core GSN elements and a quick GSN example. Essentially,
the GSN safety case starts with a top goal (claim) which then is decomposed
through an argument strategy into sub-goals (sub-claims), and sub-goals can
be further decomposed until being supported by solutions (evidence). A claim
may be subject to some context or assumption. An away goal repeats a claim
presented in another argument module. A description on all GSN elements used
in this paper can be found in [26].
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2.2 Deep Neural Networks and Lifecycle Models

Let (X,Y ) be the training data, where X is a vector of inputs and Y is a vector
of outputs such that |X| = |Y |. Let X be the input domain and Y be the set of
labels. Hence, X ⊂ X. We may use x and y to range over X and Y, respectively.
Let N be a DNN of a given architecture. A network N : X → D(Y) can be
seen as a function mapping from X to probabilistic distributions over Y. That is,
N (x) is a probabilistic distribution, which assigns for each possible label y ∈ Y
a probability value (N (x))y. We let fN : X → Y be a function such that for
any x ∈ X, fN (x) = arg maxy∈Y{(N (x))y}, i.e. fN (x) returns the classification
label. The network is trained with a parameterised learning algorithm, in which
there are (implicit) parameters representing e.g., the number of epochs, the loss
function, the learning rate, the optimisation algorithm, etc.

A comprehensive ML Lifecycle Model can be found in [4], which identifies
assurance desiderata for each stage, and reviews existing methods that con-
tribute to achieving these desiderata. In this paper, we refer to a simpler lifecycle
model that includes several phases: initiation, data collection, model construc-
tion, model training, analysis of the trained model, and run-time enforcement.

2.3 Generalisation Error

Generalisability requires that a neural network works well on all possible inputs
in X, although it is only trained on the training dataset (X,Y ).

Definition 1. Assume that there is a ground truth function f : X → Y and
a probability function Op : X → [0, 1] representing the operational profile. A
network N trained on (X,Y ) has a generalisation error:

G0−1
N =

∑

x∈ X

1{fN (x) �= f(x)} × Op(x) (1)

where 1S is an indicator function – it is equal to 1 when S is true and 0 otherwise.

We use the notation Op(x) to represent the probability of an input x being
selected, which aligns with the operational profile notion [35] in software engi-
neering. Moreover, we use 0-1 loss function (i.e., assigns value 0 to loss for a
correct classification and 1 for an incorrect classification) so that, for a given Op,
G0−1

N is equivalent to the reliability measure pfd (the expected probability of the
system failing on a random demand) defined in the safety standard IEC-61508.
A “frequentist” interpretation of pfd is that it is the limiting relative frequency
of demands for which the DNN fails in an infinite sequence of independently
selected demands [48]. The primary safety measure we study here is pfd, which
is equivalent to the generalisation error G0−1

N in (1). Thus, we may use the two
terms interchangeably in our safety case, depending on the context.
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3 The Top-Level Argument

Figure 2 gives a top-level safety argument for the top claim G1 – the DNN is
sufficiently safe. We first argue S1: that all safety related properties are satisfied.
The list of all properties of interest for the given application can be obtained
by utilising the Property Based Requirements (PBR) [34] approach. The PBR
method is a way to specify requirements as a set of properties of system objects
in either structured language or formal notations. PBR is recommended in [2] as
a method for the safety argument of autonomous systems. Without the loss of
generality, in this paper, we focus on the major quantitative property: reliability
(G2). Due to space constraints, other properties: interpretability, robustness,
etc. are discussed in Sect. 5 but remain an undeveloped goal (G3) here.

More properties that have a safety impact can be incorporated in the frame-
work as new requirements emerge from, e.g., ethical aspects of the DNN.

Fig. 2. The top-level safety argument

Despite the controversy over the use of probabilistic measures (e.g., pfd) for
the safety of conventional software systems [29], we believe probabilistic mea-
sures are useful when dealing with ML systems since arguments involving their
inherent uncertainty are naturally stated in probabilistic terms.

Setting a reliability goal (G2) for a DNN varies from one application to
another. Questions we need to ask include: (i) What is the appropriate reliability
measure? (ii) What is the quantitative requirement stated in that reliability
measure? (iii) How can confidence be gained in that reliability claim?

Reliability of safety critical systems, as a probabilistic claim, will be about
the probabilities/rates of occurrence of failures that have safety impacts, e.g.,
a dangerous misclassification in a DNN. Generally, systems can be classified
as either: continuous-time systems that are being continuously operated in the
active control of some process; or on-demand systems, which are only called
upon to act on receipt of discrete demands. Normally we study the failure rate
(number of failures in one time unit) of the former (e.g., flight control software)
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and the probability of failure per demand (pfd) of the latter (e.g., the emer-
gency shutdown system of a nuclear plant). In this paper, we focus on pfd which
aligns with DNN classifiers for perception, where demands are e.g., images from
cameras.

Given the fact that most safety critical systems adopt a defence in depth
design with safety backup channels [28], the required reliability (preq in G2)
should be derived from the higher level system, e.g., a 1-out-of-2 (1oo2) system
in which the other channel could be either hardware-only, conventional software-
based, or another ML software. The required reliability of the whole 1oo2 system
may be obtained from regulators or compared to human level performance (e.g.,
a target of 100 times safer than average human drivers, as studied in [49]). We
remark that deriving a required reliability for individual channels to meet the
whole 1oo2 reliability requirement is still an open challenge due to the dependen-
cies among channels [30] (e.g., a “hard” demand is likely to cause both channels
to fail). That said, there is ongoing research towards rigorous methods to decom-
pose the reliability of 1oo2 systems into those of individual channels which may
apply and provide insights for future work, e.g., [7] for 1oo2 systems with one
hardware-only and one software-based channels, [28,48] for a 1oo2 system with
one possibly-perfect channel, and [15] utilising fault-injection technique. In par-
ticular, for systems with duplicated DL channels, we note that there are similar
techniques, e.g., (i) ensemble method [39], where a set of DL models run in
parallel and the result is obtained by applying a voting protocol; (ii) simplex
architecture [45], where there is a main classifier and a safer classifier, with the
latter being simple enough so that its safety can be formally verified. Whenever
confidence of the main classifier is low, the decision making is taken over by the
safer classifier; the safer classifier can be implemented with e.g., a smaller DNN.

As discussed in [8], the reliability measure, pfd, concerns system behaviour
subject to aleatory uncertainty (“uncertainty in the world”). On the other hand,
epistemic uncertainty concerns the uncertainty in the “beliefs about the world”.
In our context, it is about the human assessor’s epistemic uncertainty of the
reliability claim obtained through assurance activities. For example, we may
not be certain whether a claim – the pfd is smaller than 10−4 – is true due
to our imperfect understanding about the assurance activities. All assurance
activities in the lifecycle with supportive evidence would increase our confidence
in the reliability claim, whose formal quantitative treatment has been proposed
in [11,32]. Similarly to the idea proposed in [46], we argue that all “process”
evidence generated from the DNN lifecycle activities provides initial confidence of
a desired pfd bound. Then the confidence in a pfd claim is acquired incrementally
through operational data of the trained DNN via CBI – which we describe next.

4 Reliability with Lifecycle Assurance

4.1 CBI Utilising Operational Data

In Bayesian reliability analysis, assessors normally have a prior distribution of
pfd (capturing the epistemic uncertainties), and update their beliefs (the prior
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distribution) by operational data. Given the safety-critical nature, the systems
under study will typically see failure-free operation or very rare failures. Bayesian
inference based on such non or rare failures may introduce dangerously optimistic
bias if using a Uniform or Jeffreys prior which describes not only one’s prior
knowledge, but adds extra, unjustified assumptions [49]. Alternatively, CBI is a
technique, first described in [8], which applied Bayesian analysis with only partial
prior knowledge; by partial prior knowledge, we mean the following typical forms:

– E[pfd] ≤ m: the prior mean pfd cannot be worse than a stated value;
– Pr(pfd ≤ ε) = θ: a prior confidence bound on pfd ;
– E[(1 − pfd)n] ≥ γ: prior confidence in the reliability of passing n tests.

These can be used by CBI either solely or in combination (e.g., several confi-
dence bounds). The partial prior knowledge is far from a complete prior distribu-
tion, thus it is easier to obtain from DNN lifecycle activities (C4). For instance,
there are studies on the generalisation error bounds, based on how the DNN
was constructed, trained and verified [5,21]. We present examples on how to
obtain such partial prior knowledge (G6) using evidence, e.g. from formal veri-
fication on DNN robustness, in the next section. CBI has also been investigated
for various objective functions with a “posterior” flavour:

– E[pfd | pass n tests]: the posterior expected pfd [8];
– Pr(pfd ≤ preq | k failures in n tests): the posterior confidence bound on pfd

[48,49]; the preq is normally a small pfd, stipulated at higher level;
– E[(1 − pfd)t | pass n tests]: the future reliability of passing t demands in [46].

Example 1. In Fig. 3, we plot a set of numerical examples based on the CBI
model in [46]. It describes the following scenario: the assessor has θ confidence
that the software pfd cannot be worse than ε (e.g., 10−4 according to SIL-4), then
after n failure-free runs (the x-axis), the future reliability of passing t demands
is shown on the y-axis. We may observe that stronger prior beliefs (smaller ε
with larger θ) and/or larger n/t ratio allows higher future reliability claims.

Fig. 3. Numerical examples based on the CBI model in [46]
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Depending on the objective function of interest (G2 is an example of a pos-
terior confidence bound) and the set of partial prior knowledge obtained (G6),
we choose a corresponding CBI model1 for S2. Note, we also need to explicitly
assess the impact of CBI model assumptions (G5). Published CBI theorems
abstract the stochastic failure process as a sequence of independent and iden-
tically distributed (i.i.d.) Bernoulli trials given the unknown pfd, and assume
the operational profile is constant [8,46,49]. Although we identify how to jus-
tify/relax those assumptions as open challenges, we note some promising ongoing
research:

a) The i.i.d. assumption means a constant pfd, which may not hold for a
system update or deployment in a new environment. In [31], CBI is extended
to a multivariate prior distribution case coping with scenarios of a changing
pfd, which may provide the basis of arguments for online learning DNNs in
future.
b) The effect of assuming independence between successive demands has been
studied, e.g., [20]. It is believed that the effect is negligible given non or rare
failures; note this requires further (preferably conservative) studies.
c) The changes to the operational profile is a major challenge for all proven-
in-use/field-testing safety arguments [27]. Recent research [9] provides a novel
conservative treatment for the problem, which can be retrofitted for CBI.

The safety argument via CBI is presented in Fig. 4. In summary, we collect
a set of partial prior knowledge from various lifecycle activities, then boost our
posterior confidence in a reliability claim of interest through operational data,
in a conservative Bayesian manner. We believe this aligns with the practice
of applying management systems in reality – a system is built with claims of
sufficient confidence that it may be deployed; these claims are then independently
assessed to confirm said confidence is justified. Once deployed, the system safety
performance is then monitored for continuing validation of the claims. Where
there is insufficient evidence systems can be fielded with the risk held by the
operator, but that risk must be minimised through operational restrictions. As
confidence then grows these restrictions may be relaxed.

4.2 Partial Prior Knowledge on the Generalisation Error

Our novel CBI safety argument for the reliability of DNNs is essentially inspired
by the idea proposed in [46] for conventional software, in which the authors
seek prior confidence in the (quasi-)perfection of the software from “process”
evidence like formal proofs, and effective development activities. In our case, to
make clear the connection between lifecycle activities and their contributions to
the generalisation error, we decompose the generalisation error into three:

G0−1
N = G0−1

N − inf
N∈N

G0−1
N

︸ ︷︷ ︸
Estimation error of

N + inf
N∈N

G0−1
N − G0−1,∗

f,(X,Y )

︸ ︷︷ ︸
Approximation error of

N + G0−1,∗
f,(X,Y )︸ ︷︷ ︸

Bayes error

(2)

1 There are CBI combinations of objective functions and partial prior knowledge
haven’t been investigated, which remains as open challenges.
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Fig. 4. The CBI safety argument

a) The Bayes error is the lowest and irreducible error rate over all possible
classifiers for the given classification problem [19]. It is non-zero if the true labels
are not deterministic (e.g., an image being labelled as y1 by one person but as
y2 by others), thus intuitively it captures the uncertainties in the dataset (X,Y )
and true distribution f when aiming to solve a real-world problem with DL. We
estimate this error (implicitly) at the initiation and data collection stages in
activities like: necessity consideration and dataset preparation etc.

b) The Approximation error of N measures how far the best classifier in N is
from the overall optimal classifier, after isolating the Bayes error. The set N is
determined by the architecture of DNNs (e.g., numbers of layers ), thus lifecycle
activities at the model construction stage are used to minimise this error.

c) The Estimation error of N measures how far the learned classifier N is
from the best classifier in N. Lifecycle activities at the model training stage
essentially aim to reduce this error, i.e., performing optimisations of the set N.

Both the Approximation and Estimation errors are reducible. We believe, the
ultimate goal of all lifecycle activities is to reduce the two errors to 0, especially
for safety-critical DNNs. This is analogous to the “possible perfection” notion
of traditional software as pointed to by Rushby and Littlewood [28,42]. That
is, assurance activities, e.g., performed in support of DO-178C, can be best
understood as developing evidence of possible perfection – a confidence in pfd =
0. Similarly, for safety critical DNNs, we believe ML lifecycle activities should
be considered as aiming to train a “possible perfect” DNN in terms of the two
reducible errors. Thus, we may have some confidence that the two errors are
both 0 (equivalently, a prior confidence in the irreducible Bayes error since the
other two are 0), which indeed is supported by on-going research into finding
globally optimised DNNs [17]. Meanwhile, on the trained model, V&V also
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provides prior knowledge as shown in Example 2 below, and online monitoring
continuously validates the assumptions for the prior knowledge being obtained.

Example 2. We present an illustrative example on how to obtain a prior confi-
dence bound on the generalisation error from formal verification of DNN robust-
ness [23,40]. Robustness requires that the decision making of a neural network
cannot be drastically changed due to a small perturbation on the input. For-
mally, given a real number d > 0 and a distance measure || · ||p, for any input
x ∈ X, we have that, fN (x) = fN (x′) whenever ||x′ − x||p ≤ d.

Figure 5 shows an example of the robustness verification in a one-dimensional
space. Each blue triangle represents an input x, and the green region around
each input x represents all the neighbours, x′ of x, which satisfy ||x′ − x||p ≤ d
and fN (x) = fN (x′). Now if we assume Op(x) is uniformly distributed (an
assumption for illustrative purposes which can be relaxed for other given Op(x)
distributions), the generalisation error has a lower bound – the chance that the
next randomly selected input does not fall into the green regions. That is, if ε
denotes the ratio of the length not being covered by the green regions to the
total length of the black line, then G0−1

N ≤ ε. This said, we cannot be certain
about the bound G0−1

N ≤ ε due to assumptions like: (i) The formal verification
tool itself is perfect, which may not hold; (ii) Any neighbour x′ of x has the same
ground truth label of x. For a more comprehensive list, cf. [14]. Assessors need
to capture the doubt (say 1 − θ) in those assumptions, which leads to:

Pr(G0−1
N ≤ ε) = θ. (3)

We now have presented an instance of the safety argument template in Fig. 6.
The solution So2 is the formal verification showing G0−1

N ≤ ε, and G8 quan-
tifies the confidence θ in that result. It is indeed an open challenge to rigor-
ously develop G8 further, which may involve scientific ways of eliciting expert
judgement [36] and systematically collecting process data (e.g., statistics on the
reliability of verification tools). However, we believe this challenge – evaluating
confidence in claims, either quantitatively or qualitatively (e.g., ranking with
low, medium, high), explicitly or implicitly – is a fundamental problem for all
safety case based decision-makings [11,16], rather than a specific problem of our
framework.

The sub-goal G9 represents the mechanism of online monitoring on the valid-
ity of offline actives, e.g., validating the environmental assumptions used by
offline formal verifications against the real environment at runtime [18].

Fig. 5. Formal verification on DNN robustness in an one-dimensional space
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5 Other Safety Related Properties

So far we have seen a reliability-centric safety case for DNNs. Recall that, in this
paper, reliability is the probability of misclassification (i.e. the generalisation
error in (1)) that has safety impacts. However, there are other DNN safety
related properties concerning risks not directly caused by a misclassification,
like interpretability, fairness, and privacy; discussed as follows.

Interpretability is about an explanation procedure to present an interpre-
tation of a single decision within the overall model in a way that is easy for
humans to understand. There are different explanation techniques aiming to
work with different objects, see [22] for a survey. Here we take the instance expla-
nation as an example – the goal is to find another representation expl(fN , x)
of an input x, with the expectation that expl(fN , x) carries simple, yet essen-
tial, information that can help the user understand the decision fN (x). We use
f(x) ⇔ expl(fN , x) to denote that the explanation is consistent with a human’s
explanation in f(x). Thus, similarly to (1), we can define a probabilistic measure
for the instance-wise interpretability:

IN =
∑

x∈X

(f(x) �⇐⇒ expl(fN , x)) × Op(x) (4)

Fig. 6. A template of safety arguments for obtaining partial prior knowledge

Then similarly as the argument for reliability, we can do statistical inference
with the probabilistic measure IN . For instance, as in Example 2, we (i) firstly



A Safety Framework for Deep Neural Networks 255

define the robustness of explanations in norm balls, measuring the percentage
of space that has been verified as a bound on IN , (ii) then estimate the con-
fidence of the robust explanation assumption and obtain a prior confidence in
interpretability, (iii) finally Bayesian inference is applied with runtime data.

Fairness requires that, when using DL to predict an output, the prediction
remains unbiased with respect to some protected features. For example, a finan-
cial service company may use DL to decide whether or not to provide loans to
an applicant, and it is expected that such decision should not rely on sensitive
features such as race and gender. Privacy is used to prevent an observer from
determining whether or not a sample was in the model’s training dataset, when
it is not allowed to observe the dataset directly. Training methods such as [1]
have been applied to pursue differential privacy.

The lack of fairness or privacy may cause not only a significant monetary loss
but also ethical issues. Ethics has been regarded as a long-term challenge for AI
safety. For these properties, we believe the general methodology suggested here
still works – we first introduce bespoke probabilistic measures according to their
definitions, obtain prior knowledge on the measures from lifecycle activities, then
conduct statistical inference during the continuous monitoring of the operation.

6 Related Work

Alves et al. [2] present a comprehensive discussion on the aspects that need to be
considered when developing a safety case for increasingly autonomous systems
that contain ML components. In [10], a safety case framework with specific chal-
lenges for ML is proposed. [44] reviews available certification techniques from
the aspects of lifecycle phases, maturity and applicability to different types of
ML systems. In [27], safety arguments that are being widely used for conven-
tional systems – including conformance to standards, proven in use, field testing,
simulation and formal proofs – are recapped for autonomous systems with dis-
cussions on the potential pitfalls. Similar to our CBI arguments that exploit
operational data, [24,33] propose utilising continuously updated arguments to
monitor the weak points and the effectiveness of their countermeasures. The work
[3] identifies applicable quantitative measures of assurance for learning-enabled
components.

Regarding the safety of automated driving, [41,43] discuss the extension and
adaptation of ISO-26262, and [13] considers functional insufficiencies in the per-
ception functions based on DL. Additionally, [37,38] explores safety case patterns
that are reusable for DL in the context of medical applications.

7 Discussions, Conclusions and Future Work

In this paper, we present a novel safety argument framework for DNNs using
probabilistic risk assessment, mainly considering quantitative reliability claims,
generalising this idea to other safety related properties. We emphasise the use of
probabilistic measures to describe the inherent uncertainties of DNNs in safety
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arguments, and conduct Bayesian inference to strengthen the top-level claims
from safe operational data through to continuous monitoring after deployment.

Bayesian inference requires prior knowledge, so we propose a novel view by
(i) decomposing the DNN generalisation error into a composition of distinct
errors and (ii) try to map each lifecycle activity to the reduction of these errors.
Although we have shown an example of obtaining priors from robustness verifi-
cation of DNNs, it is non-trivial (and identified as an open challenge) to establish
a quantitative link between other lifecycle activities to the generalisation error.
Expert judgement and past experience (e.g., a repository on DNNs developed by
similar lifecycle activities) seem to be inevitable in overcoming such difficulties.

Thanks to the CBI approach – Bayesian inference with limited and partial
prior knowledge – even with sparse prior information (e.g., a single confidence
bound on the generalisation error obtained from robustness verification), we can
still apply probabilistic inference given the operational data. Whenever there are
sound arguments to obtain additional partial prior knowledge, CBI can incor-
porate them as well, and reduce the conservatism in the reasoning [8]. On the
other hand, CBI as a type of proven-in-use/field-testing argument has some of
the fundamental limitations as highlighted in [25,27], for which we have identi-
fied on-going research towards potential solutions.

We concur with [27] that, despite the dangerous pitfalls for various existing
safety arguments, credible safety cases require a heterogeneous approach. Our
new quantitative safety case framework provides a novel supplementary approach
to existing frameworks rather than replace them. We plan to conduct concrete
case studies and continue to work on the open challenges identified.
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Abstract. There are many aspects to the safe use of artificial intelli-
gence. To date, comparatively little attention has been given to the spe-
cialist computational hardware that is used, especially within embedded
systems. Consequently, there is a need to identify evidence that would
support a compelling assurance argument for the safe use of off-the-shelf,
large scale, complex system-on-chip designs. To that end, we summarise
issues related to the use of multi-core processors in aviation, which con-
textualises our problem. We also discuss a collection of considerations
that provide evidence to support a compelling assurance argument.

Keywords: Artificial intelligence · Computational hardware ·
Machine learning · Safety · Security

1 Introduction

Artificial Intelligence (AI), especially that enabled by Machine Learning (ML),
is being used in an increasing number of applications, some with potential safety
impacts. This has motivated a large body of work aimed at specific aspects of AI,
including: susceptibility to adversarial examples [21]; explainability [19]; formal
specification [16]; through-lifecycle assurance [4]; and ML safety engineering [24].
Less attention has been paid to the assurance of the computational hardware that
supports AI. Correct functioning of this hardware is necessary for the correct
functioning of AI. This hardware is also significantly more complex than anything
that is currently being used in other safety-critical domains (e.g. aviation).

We briefly discuss (in Sect. 2) the introduction of Multi-Core Processors
(MCPs) into the aviation domain, which provides helpful context. We then (in
Sect. 3) present a structured set of evidence-generating activities that support
the hardware-related portion of an assurance argument. Since it represents the
most common case, we focus on the use of large-scale, complex, off-the-shelf
hardware, in the form of System-on-Chips (SoCs). For brevity, we refer to this
as AI-enabling hardware. A sumary is provided (in Sect. 4).
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2 Multi-core Processors in Aviation

Before discussing modern AI-enabling hardware it is informative to review the
introduction of MCPs in the aviation domain.

Use of MCPs is beneficial because they provide increased computational
power. It is necessary because many single-core processors are becoming obso-
lete. However, the introduction of MCPs has faced challenges and proceeded at a
controlled, relatively slow pace. A review of relevant guidance material suggests
that the two main challenges were interference and non-determinism [9]. Inter-
ference happens when one application unintentionally (and, typically, adversely)
affects the behaviour of another. Use of shared resources, for example, inter-
connects and lower-level caches is a typical cause. Unless it is understood and
mitigated, interference will make behaviour non-deterministic.

There are four main aspects to assuring the use of MCPs in aviation:

– Control the configuration of the MCP;
– Understand and mitigate potential interference paths;
– Verify behaviour of software applications running on the MCP;
– Implement architectural protections (beyond the level of the MCP).

3 AI-Enabling System-on-Chip

Approaches that support use of MCPs are insufficient to support the assurance
of AI-enabling hardware. There are two main reasons for this. Firstly, SoCs are
significantly more complex than MCPs. Secondly, aviation-related MCP guid-
ance takes a traditional approach to safety, protecting against random chance
events. We adopt a wider view that incorporates both safety and security.

We follow the aviation domain guidance in asserting that a SoC should be
assured in the context of the software associated with a particular deployment.
Providing generally-applicable assurance that a SoC can be used for all possible
software applications is practically impossible.

The following subsections discuss topics that would be expected to contribute
to an assurance argument for AI-enabling hardware. The subsections follow the
four main aspects of MCP use in the aviation domain, as shown in Table 1;
italics show cases where the subsection is of indirect relevance to the aspect.

Due to space limitations, the subsections do not cover all aspects of hardware
assurance. Our focus on off-the-shelf, physical items means that considerations
applied during design and manufacturing considerations are outside our scope.

3.1 Configuration

Configuration settings can significantly change hardware behaviour, for exam-
ple, by controlling cache allocations and changing power management strategies.
Consequently, it is important that configuration settings are documented, justi-
fied, controlled and monitored (including at run time).
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Table 1. Considerations and relationships to main aspects of MCP use in the aviation
domain (italic text shows an indirect relationship).

Aspect of MCP use Consideration (Subsection)

Control configuration Configuration (3.1)

Host and Target ( 3.3)

Manage interference paths Interference paths (3.2)

Worst-Case Execution Time ( 3.5)

Verify behaviour Host and Target (3.3)

Test Coverage (3.4)

Worst-Case Execution Time (3.5)

Logging (3.6)

Safety Islands (3.7)

Hardware-Based Trojans (3.8)

Architectural protections System-Level Architecture (3.9)

Microcode updates, can significantly change detailed behavioural aspects, for
example, speculative execution [22]. Consequently, management of configuration
settings needs to include management of microcode updates.

Particular attention also needs to be paid to debug features. These features
are not intended to be used in operational settings, so they may be developed
with less rigour. Debug features also provide access to low-level information,
which should not generally be exposed during operational use.

3.2 Interference Paths

Initially, potential interference paths should be identified from a theoretical per-
spective. Buses, caches and interconnects are obvious candidates; interrupt han-
dling routines may also be relevant. This theoretical investigation should inform
an empirical investigation, which relies on software. Applications intended to be
run on the system should be considered, as well as “enemy processes”, which are
deliberately designed to try and cause interference [13].

Much of the literature related to interference paths considers multiple soft-
ware applications interfering with each other, with effects on timing. AI-enabling
hardware may introduce the possibility of “self-interference”, with an effect on
computation results. For example, the order in which floating point numbers are
summed can change the result of the summation. Unless care is taken, this effect
could occur in parallelised calculations [23].

3.3 Host and Target

AI is often developed on “host” hardware, before deployment on to “target”
hardware, embedded within the operational system. Differences between host
and target hardware can lead to unexpected effects.
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We note that some AI-enabling hardware may be suitable for developing neu-
ral networks. This may allow the same hardware to be used for development and
operation. Provided the same configuration settings were used in both settings,
this would largely mitigate the concerns discussed in this subsection.

Numerical precision may differ between host and target (e.g. to allow deploy-
ment on constrained hardware [12]). Exhaustively running all samples (from the
Training, Test and Verification (TTV) data sets) through operational software
on the target hardware protects against consequences of this difference. Whilst
conceptually simple, this may be impractical. If so, a sampling-based approach
may be used, provided samples are chosen with care. Useful inspiration may be
drawn from approaches used to design computer-based experiments [18].

The approaches discussed above are focused on the performance of the final
ML-trained model on the target hardware. From an engineering perspective,
this can lead to increased risk late in a project, with host-target differences only
becoming apparent towards the end of the activity. To reduce this risk there
may be benefit in using simple models, that are quick to develop and analyse,
to identify key differences between host and target hardware.

Large-scale, on-chip integration can increase the importance of Process Varia-
tion (PV), which occurs as a result of manufacturing imperfections. These imper-
fections can lead to significant variations in power consumption and timing viola-
tions [17]. Consequently, there is value in supplementing the generally-applicable
testing outlined above with some level of test on each and every SoC.

3.4 Test Coverage

A complete discussion of software assurance issues is outside the scope of this
paper, but a brief discussion of test coverage is relevant. Here, we follow [4], which
also provides an overview of general ML assurance issues. When considering test
coverage, it is helpful to consider four different domains, or sets of inputs:

1. The input domain space, I, which is the set of inputs that the model can
accept.

2. The operational domain space, O ⊂ I, which is the set of inputs that the
model may be expected to receive when used operationally.

3. The failure domain space, F ⊂ I, which is the set of inputs the model may
receive if there are failures elsewhere in the system.

4. The adversarial domain space, A ⊂ I, which is the set of inputs the model
may receive if it is being attacked by an adversary.

Separate coverage arguments should be provided for all of these domains.
The argument relating to I should consider the number of inputs tested and
their distribution across the input space (potentially informed by designs for
computer experiments [18]); situation coverage [2] may be useful when thinking
about O; coverage of F should be informed by analysis of system architecture,
focusing on subsystems that acquire data that is subsequently used as an input
to an ML model; and coverage of A should be based on an understanding of
possible attacks [10].
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3.5 Worst-Case Execution Time

One reason MCPs are of concern in aviation is their potential effect on Worst-
Case Execution Time (WCET). This could be important if an AI-enabling SoC
is being used as part of a vehicle control loop, for example. Activities discussed
above, notably understanding interference paths and test coverage, should pro-
vide helpful information to support assurances related to WCET.

In addition, particular inputs may affect execution time. For example, it is
well-known that poorly-implemented cryptographic routines can show significant
timing differences depending on inputs [15]. This may not be apparent for typical
neural networks, where each input follows the same path through the program
code. However, input-dependent timing may be apparent in some algorithms
(e.g. bypassing later layers of a neural network [11]).

Specific bit patterns may also affect timing. For example, in traditional (i.e.
non-AI) computing, subnormal numbers can have a significant effect on execu-
tion time [3]. If the operational software is based on floating point numbers then
bit patterns provide another aspect of measuring coverage across I.

3.6 Logging

Learning from incidents is an important part of a good safety culture. Sufficient
AI-related information needs to be logged to support this learning. From our
perspective, logging raises two key questions.

Firstly, whether logging relies on features of the SoC or whether it uses other
system features (e.g. recording inputs and outputs at the SoC boundary). If SoC
features are used then logging may create a new interference path, or emphasise
a previously-identified one.

Secondly, (assuming SoC features are used), whether logging-related demands
are constant, or whether they vary depending on the prevailing situation. Varying
logging demands are another factor that can affect WCET.

3.7 Safety Islands

A large-scale, complex SoC intended for embedded use within a safety-related
context may include a “safety island”. This is a specific set of isolated hardware
that is dedicated to fault handling [7].

In the case of off-the-shelf hardware, full details of any safety island are
unlikely to be available. Nevertheless, areas of potential interference between
the safety island and the rest of the SoC should be identified. This is a special
case of interference path analysis.

The safety island would be expected to detect and respond to failures else-
where on the SoC. This functionality should be examined as part of test activities
(e.g. by inducing failures in different parts of the SoC).
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3.8 Hardware-Based Trojans

Hardware-based Trojans are an acknowledged potential vulnerability in software
systems [1]. Consequently, they present a notable threat to the use of AI in
safety-related systems.

Theoretically, full control of the entire supply chain is sufficient to protect
against hardware-based Trojans. In reality, the size and dynamic nature of the
supply chain mean this level of control is impossible. Supply chain monitoring
is important, but a multi-layered argument is needed.

Thinking about the standard cyber security Confidentiality, Integrity and
Availability (CIA) triad, availability should be detectable and manageable by
traditional safety measures. From a system perspective, this is the same sit-
uation as a hardware failure of the SoC. Handling this situation will require
system-level architectural features. If there is a means of checking the AI output
then traditional safety measures should also be able to detect loss of integrity. If
the output cannot easily be checked then, as before, system-level architectural
features should protect against the hazard that “AI provides an undetectable
incorrect result”. Confidentiality is very difficult to protect. System-level archi-
tectural designs, which, from a confidentiality perspective, treat the SoC as an
untrusted “black box” may be the most appropriate way of mitigating this risk.

3.9 System-Level Architecture

Activities to support the use of computational hardware in safety-related
domains can be split between fault prevention and fault tolerance, with the
latter subdividing into fault detection and fault recovery. (This represents a sig-
nificantly simplified view of the concepts and taxonomy of dependable and secure
computing [6].) Much of the previous discussion has focused on prevention. Tol-
erance is typically achieved through system-level architectural design.

Tolerance can be achieved by using some form of diversity. Historically, one
option involved using multiple, independent software teams. Experience has
shown there are difficulties with this approach: it is costly; and it is difficult
to quantify its benefits, which might not be as much as first appears [14]. ML
development approaches change the cost-profile of software development [5].
They replace some expensive human effort for potentially less-expensive com-
pute power. This may make diversity cheaper to achieve. Furthermore, the large
number of samples in the TTV data sets may make it easier to measure diversity.

Diversity could also be achieved by using different ML development tools
[20] or using different AI-enabling hardware. Another form of diversity could
be achieved by combining an AI channel with a monitor channel implemented
using traditional software techniques [8]. This would reduce the assurance burden
borne by the AI channel (and the AI-enabling hardware). However, defining a
suitable monitor is a non-trivial task.
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4 Summary

Some form of assurance argument will be needed to support the use of AI in
safety-related applications. Considerations related to AI-enabling hardware, typ-
ically large-scale, complex, off-the-shelf SoCs, will be an important part of that
argument. This argument needs to investigate the hardware in the context of
the hosted software applications. In loose terms we require confidence that:

– It will work, in general;
– It will work, in unlikely situations;
– Errors (i.e. failures to work) will be detected;
– Information will be protected (i.e. security).

Information to support those assertions should be generated from a variety
of activities. Examples (mapped to subsections of this paper) are indicated in
Table 2: ★ marks activities that directly support an assertion; ✩ marks activities
where support is indirect.

Table 2. Support provided by activities to assertions (★ indicates direct support, ✩

indicates indirect support).

Activity (Subsection) Work,

in general

Work,

in unlikely

Detect

errors

Protect

information

History of previous use (3-Intro) ✩

Document and justify config. (3.1) ★ ★ ✩ ✩

Run-time checks on config. (3.1) ★ ✩ ✩

Microcode updates (3.1) ★ ★ ✩

Control debug features (3.1) ✩ ✩ ★

Theoretical interference (3.2) ✩ ✩ ★

Empirical interference: apps (3.2) ★ ✩

Empirical interference: enemy procs (3.2) ★ ★

Self-interference (3.2) ✩ ★

Effects of numerical precision (3.3) ✩ ★

Exhaustive coverage of TTV data sets (3.3) ★ ★

Sampled coverage of TTV data sets (3.3) ★ ✩

Simple host-target comparisons (3.3) ★ ✩

Test coverage of I (3.4) ★ ✩ ★

Test coverage of O (3.4) ✩ ★ ★

Test coverage of F (3.4) ★ ★ ✩

Test coverage of A (3.4) ✩ ★

Testing on each and every SoC (3.4) ★ ✩

Effect of specific inputs on WCET (3.5) ★ ✩

Effect of specific bit patterns on WCET (3.5) ★ ★

Potential effect of logging (3.6) ✩ ✩

Safety island independence (3.7) ✩ ★

Safety island functionality (3.7) ✩ ★

Partial control of supply chain (3.8) ✩ ✩

Monitoring SoC manufacturer errata (3.8) ✩ ★

Wrapping Intellectual Property (IP) cores (3.8) ★

Multiple AI channels (3.9) ✩ ✩ ★

AI and non-AI channels (3.9) ★
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Collectively, these activities cover the assertions we wish to make. This pro-
vides some confidence that a compelling assurance argument can be made to
support the use of AI-enabling hardware in a safety-related system. However,
there is a danger that Table 2 can be interpreted too favourably. There is much
work to be done before all of the activities are well understood and routinely
implemented as part of general engineering practice. Whilst this paper provides
a signpost towards a compelling argument, we still have some way to go before
we reach that destination.
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Abstract. Dependability assurance of systems embedding machine
learning (ML) components—so called learning-enabled systems (LESs)—
is a key step for their use in safety-critical applications. In emerging
standardization and guidance efforts, there is a growing consensus in
the value of using assurance cases for that purpose. This paper devel-
ops a quantitative notion of assurance that an LES is dependable, as a
core component of its assurance case, also extending our prior work that
applied to ML components. Specifically, we characterize LES assurance
in the form of assurance measures: a probabilistic quantification of con-
fidence that an LES possesses system-level properties associated with
functional capabilities and dependability attributes. We illustrate the
utility of assurance measures by application to a real world autonomous
aviation system, also describing their role both in i) guiding high-level,
runtime risk mitigation decisions and ii) as a core component of the
associated dynamic assurance case.

Keywords: Assurance · Autonomy · Confidence · Learning-enabled
systems · Machine learning · Quantification

1 Introduction

The pursuit of developing systems with increasingly autonomous capabilities is
amongst the main reasons for the emergence of learning-enabled systems (LESs),
i.e., systems embedding machine learning (ML) based software components.
There is a growing consensus in autonomy standardization efforts [1] on the value
of using assurance cases (ACs) as the mechanism by which to convince various
stakeholders that an LES can be relied upon. ACs have been successfully used
for safety assurance of novel aviation applications where—like LESs—regulations
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and standards continue to be under development [2]. However, LESs pose partic-
ular assurance challenges [3] and existing AC technologies may not be sufficient,
requiring a framework where the system and its AC evolve in tandem [4]. Here
too, there are specific additional challenges: first, structured arguments1 in many
ACs are effectively static, i.e., they are usually developed prior to system deploy-
ment under assumptions about the environment and intended system behavior.
Evolution of the system or its ML components (e.g., via online learning, or by
adaptation in operation) can render invalid a previously accepted AC. In princi-
ple, although it is possible to dynamically evolve structured arguments [4], since
their role is primarily to convince human stakeholders, it makes more sense for
such updates to happen between missions at well-defined points.

Second, an operational evaluation of the extent of assurance in an LES (or its
ML components, where appropriate) is a valuable system-level indicator of con-
tinued fitness for purpose. That, in turn, can facilitate potential intervention and
counter-measures when assurance drops below an acceptable level during a mis-
sion. Indeed, online assurance updates that are aimed at machine consumption
must necessarily be in a computable form, e.g., using a formal language, such as
a logic, or as a quantification. So far as we are aware, prevailing notions of ACs
do not yet admit such evaluation. Prior efforts at AC confidence assessment [5,6]
have focused on the argument structure rather than the system itself, and face
challenges in repeatable, objective validation due to their reliance on subjective
data. They have also not been applied to LESs. Thus, there is a general need
to capture a computable form of assurance to bolster an otherwise qualitative
AC. Note that although a qualitative AC may well refer to quantitative evidence
items, here we are identifying the necessity to have quantified assurance as a core
facet of LES ACs.

This paper focuses on the problem of assurance quantification, deferring its
use in dynamic updates to future work. The main contribution is an approach
to characterize assurance in an LES through uncertainty quantification (UQ) of
system-level dependability attributes, demonstrated by application to an avia-
tion domain LES.

2 Methodology

Previously [7], we have described how assurance of ML components in an LES
can be characterized through UQ of component-level properties associated with
the corresponding (component-level) dependability attributes. Here, we extend
our methodology to the system-level, relying on the following concepts: assurance
is the provision of (justified) confidence that an item—i.e., a (learning-enabled)
component, system, or service—possesses the relevant assurance properties. An
assurance property is a logical, possibly probabilistic characteristic associated

1 The systematic reasoning that captures the rationale why specific conclusions, e.g.,
of system safety, can be drawn from the evidence supplied.
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with dependability attributes [8] and functional capabilities. One or more assur-
ance properties applied to a particular item give an assurance claim2. An assur-
ance measure characterizes the extent of confidence that an assurance property
holds for an item through a probabilistic quantification of uncertainty. It can
be seen as implementing a UQ model on which to query the confidence in an
assurance property.3

In general, we can define multiple assurance properties (and assurance mea-
sures), based on the LES functionality and dependability attributes for which
assurance is sought. For example, the proposition “the aircraft location does not
exceed a specified lateral offset from the runway centerline during taxiing” is a
system-level assurance claim associated with the attribute of reliability. Similarly,
the assurance property “the aircraft does not veer off the sides of the runway
during taxiing” is associated with the attribute of system safety. Such assur-
ance properties directly map to the claims made in the structured arguments
of an LES assurance case. Thus, we can leverage the methodology for creating
structured arguments [9] to also specify assurance properties.

For quantification, we mainly consider assurance measures for those system-
level properties that can be reasonably and feasibly quantified. For example,
assurance measures for the preceding example quantify the uncertainty that the
aircraft location does not exceed, respectively, the specified lateral offset from
the runway centerline (reliability), and half the width of the runway pavement
(safety), over the duration of taxiing.

LESs used in safety-critical applications, especially aviation, are effectively
stochastic dynamical systems. The insights from this observation are that we can:
i) capture LES behavior through model-based representations of the underlying
stochastic process; ii) view system-level assurance properties as specific real-
izations of particular random variables (RVs) of that process; and iii) express
confidence in the assurance properties—i.e., the assurance measures—by prop-
agating uncertainty through the model to determine the distributions over the
corresponding RVs.

One challenge is selecting an appropriate model and representation of the
stochastic process to be used to model LESs. Although there is not a generic
answer for this, such a model could be built, for example, by eliciting the
expected system behavior from domain experts, by transforming a formal system
description, using model fitting and statistical optimization techniques applied
to (pre-deployment) system simulation and execution traces, or through a combi-
nation of the three. For LESs, a formal system description may be often unavail-
able. As such, we rely on elicitation and statistical techniques, using Bayesian
models where possible, making allowance to admit and use other well-known,
related stochastic process models—such as Markov chains—and leveraging data
from analytical representations of system dynamics, simulations, and execution.
The Bayesian concepts of credible intervals and regions—determined on the

2 Henceforth, we do not distinguish assurance properties from assurance claims.
3 When the assurance property is itself probabilistic, the corresponding assurance

measure is deterministic, i.e., either 0 or 1.



Quantifying Assurance in Learning-Enabled Systems 273

posterior distribution of the RVs for assurance properties—give a formal footing
to the intuitive, subjective notion of confidence that usually accompanies claims
in assurance arguments, and ACs in general [10].

3 Illustrative Example – Runway Centerline Tracking

System Description. To show our methodology is feasible, we now apply it to
quantify assurance in an aviation domain LES supplied by our industrial collabo-
rators: a unmanned aircraft system (UAS) embedding an ML component, trained
offline using supervised learning, to support an autonomous taxiing capability.
The broader goal is to enable safe aircraft movement on a runway without human
pilot input. Figure 1 shows a simplified pipeline architecture used to realize this
capability. A deep convolutional neural network (CNN) implements a perception
function that ingests video images from a wing-mounted camera pointed to the
nose of the aircraft. The input layer is (360 × 200) pixels ×3 channels wide;
the network size and complexity is of the order of 100 layers with greater than
two million tunable parameters. Effectively, this ML component performs regres-
sion under supervised learning producing estimates of cross track error (CTE)4

and heading error (HE)5 as output. These estimates are input to a classical
proportional-integral-derivative (PID) controller that generates the appropriate
steering and actuation signals.

Fig. 1. Pipeline architecture to implement an autonomous taxiing capability in a UAS.

3.1 Assurance Properties

The main objective during taxiing (autonomously, or under pilot control) is to
safely follow the runway (or taxiway) centerline. Safety during taxiing entails
avoiding lateral runway overrun, i.e., not veering off the sides of the runway
pavement. Although avoiding obstacles on the runway is also a safety concern,

4 The horizontal distance between the aircraft nose wheel and the runway centerline.
5 Heading refers to the compass direction in which an object is pointed; heading error

(HE) here, is thus the angular distance between the aircraft heading and the runway
heading.
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it is a separate assurance property that we do not consider in this paper. Thus,
safety can be achieved here, in part, by meeting a performance objective of
maintaining an acceptable lateral offset (ideally zero) on either side of the runway
centerline during a taxi mission from starting taxi to stopping (or taking off).6

In other words, the closer the aircraft is to the runway centerline during taxiing,
the less likely it is to veer off the sides of the runway.

This performance objective relates to the attribute of reliability, where taxi
failure is considered to be the violation of the specified lateral offset. Here,
we focus on the corresponding assurance property, AssuredTaxi : |CTEa| <
offset, where offset = 2m is the maximum acceptable lateral offset on either
side of the runway centerline for this application and aircraft type. CTEa, which
is the true (or actual) CTE for the UAS, is a signed, real valued scalar; the
absolute value gives the magnitude of the offset, and the sign indicates where
the UAS is located relative to the centerline, i.e., to its left or its right.

3.2 Assurance Quantification

Model Choice. The assurance measure corresponding to AssuredTaxi, estab-
lishes Pr (|CTEa| < 2m), which characterizes the uncertainty (or conversely, con-
fidence) in the true (or actual) CTE (CTEa) relative to the specified offset.
CTEa evolves in time as the PID controller responds to estimates of CTE and
HE, themselves the responses of the deep CNN component, to runway images
captured by the wing mounted camera (see Fig. 1). CTEa is thus uncertain and
depends on other variables, of which those that can be observed are the esti-
mated CTE (CTEe), estimated HE (HEe), and a sequence of images. We can
also model the controller behavior in terms of a time series evolution of CTEa

since, during taxiing, the true CTE at a given time is affected by the controller
actuation signals at prior times.

An abstracted model of LES behavior is reflected in the joint distribution
of the relevant observed and uncertain variables. In fact, a dynamic Bayesian
network (DBN) [11] is a convenient and compact representation of this joint
distribution, as we will see subsequently in this section. It takes into account the
temporal evolution of the variables and their (known or assumed) conditional
independence relations. Thus, to determine the assurance measure, we effectively
seek to quantify the (posterior) distribution over CTEa, given a sequence of
runway images, the estimates of CTE and HE produced by the ML component,
and the controller behavior, as a query over the corresponding DBN model.

Model Variables. Model variables can be discrete or continuous, and there are
tradeoffs between information loss and computational cost involved in the choice.
Table 1 lists the discrete variables we have chosen, giving the interval boundaries
for their states. The choice of the intervals that constitute the states of the
variables has been based, in part, on: i) domain knowledge, ii) an assessment
6 Our industry collaborators elicited the exact performance objectives from current

and proficient professional pilots.
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Table 1. DBN model variables.

of the data sampled from the environments used for training and testing the
CNN, and iii) the need to develop an executable model that was modest in its
computational needs.

Here, w is the width of the runway in meters, and negative values represent
CTE measured on the left of the runway centerline. The HE is given in degrees,
while D is dimensionless. An additional variable (I, not shown in Table 1) models
the runway image captured from the camera video feed as a vector of values in
the range [0 . . . 1] representing normalized pixel values. The Boolean variable
D represents the detection of outliers in camera image data. Such outliers may
manifest due to various causes, including camera errors and covariate shift, i.e.,
when the data input to the CNN has a distribution different from that of its
training data. Note that the LES shown in Fig. 1 does not indicate whether or not
it includes a mechanism to detect outliers or covariate shift. However, we include
this variable here, motivated by our earlier work on component-level assurance
quantification of the CNN [7], which revealed its susceptibility to outlier images.
In fact, D models a runtime monitor for detecting out of distribution (OOD)
inputs to the CNN.

Fig. 2. DBN structure for assurance quantification, showing two adjacent slices at times
t− 1, and t; shaded nodes represent observed variables, clear nodes are the uncertain,
latent variables.
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Model Structure. Each variable in Table 1 is indexed over time: we will denote
a variable X at time t as X(t). The causal ordering of the model variables
(Fig. 2) informs the structure of the DBN: the estimated CTE and HE at time
t are inputs to the controller which, in turn, impacts the future location of the
aircraft at time t + ε. The directed links between the corresponding variables in
adjacent time slices capture this dependency. For example, in Fig. 2, these are the
directed links CTE(t−1)

e → CTE(t)
a , and HE(t−1)

e → CTE(t)
a (and likewise for the

preceding and subsequent time slices). The directed links CTE(t−1)
a → CTE(t)

a

model the correlation between actual vehicle position over time, also capturing
vehicle inertia.

At time t, the runway image I(t) influences the belief about the true aircraft
location, i.e., the states of CTE(t)

a , with the node D modeling the associated
structural uncertainty. This reflects the intuition that upon detecting an outlier
image (more generally an OOD input), we are no longer confident that the image
seen is an indicator of the actual aircraft location. Figure 2 reflects these depen-
dencies by the directed edges CTE(t)

a ← I(t), and CTE(t)
a ← D(t), respectively.

Figure 2 shows two adjacent time slices of the DBN structure, although the
actual structure is unrolled for T time steps, the duration of taxiing, to compute
the assurance measure over the taxi phase. At time t, this is, in fact, the sum
of the probability mass over the seven states of CTE(t)

a that lie within the inter-
val [−2, 2] (see Table 1). By unrolling the DBN for an additional ε time steps
and propagating the uncertainty through the model from the time of the last
observations, the model can provide an assurance forecast.

Probability Distributions. To complete the DBN model specification, we
need to specify the conditional probability distributions (CPDs) over the model
variables, as encoded by its structure. One way to identify the CPDs is through
uncertainty quantification of the physical system model [12]. Practically, the
latter may not be available, especially for LESs.

Another alternative—the approach we take here—is to assume a functional
form for the CPDs that is then tuned based on execution and simulation data.
Specifically, to construct the CPD represented by the transition edge between
the time slices, i.e., Pr(CTE(t)

a |CTE(t−1)
a ,CTE(t−1)

e ,HE(t−1)
e ), we chose a multi-

nomial distribution with a uniform prior, tuned using the maximum a posteriori
probability (MAP) estimate on simulation data. This choice was advantageous
in the sense that the DBN produces a uniform posterior distribution over CTEa

when the observed variables take on values from a distribution different from
that of the data used to build the CPDs. For this example, the simulation data
comprised sequences of runway images, estimated CTE and HE as produced by
the CNN, and true CTE. Section 4 gives more details on the simulation platform
and data gathered.

To determine the emission probability Pr(CTE(t)
a | I(t)), first we used the

Gaussian process (GP) model underpinning our prior work on component-level
assurance quantification [7]. In brief, the idea is to use a GP to model the error
performance of the CNN (i.e., its accuracy) on its input (i.e., runway images).
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Then, adding the error distribution to the estimate of CTE gives the distribution
over the true CTE. However, for high dimensional data (such as images), this is
computationally expensive. Instead, in this paper we used an ensemble of decision
trees [13] as a classifier that ascribes a probability distribution over the states
of CTEa, given a runway image, I. This approach builds uncorrelated decision
trees such that their combined estimate is more accurate than that of any single
decision tree. To identify the decision rules, we used supervised learning over
the collection of runway images and corresponding true CTE, sampled from
the same environments used to train and test the CNN (see Sect. 4). For this
example, we built 280 decision trees with terminal node size of at least 10,
by randomly sampling 100 data points using the Gini index as a performance
metric, selecting the model parameters to balance classification accuracy and
computational resources.

4 Experimental Results

We now present some results of our experiments in quantifying LES assurance
in terms of the assurance measure, Pr (|CTEa| < 2m), based upon simulations
of constant speed taxiing missions.

Simulation Setup. We use a commercial-off-the-shelf flight simulator instru-
mented to reflect the pipeline architecture of Fig. 1. The simulation environment
includes various airports and runways with centerlines of varying quality, e.g.,
portions of the centerline may be obscured at various locations (see Fig. 1). We
can create different training and test environments by changing various simula-
tion settings, among which two that we have selected are: i) weather induced
visibility (clear and overcast), and ii) the time of day (07:30 am to 2:00 pm).
Two such environments are, for example, “Clear at 07:30 am”, and “Overcast
at 12:15 pm”. More generally, we can construct environments such as “Clear
Morning”, “Overcast Afternoon”, and so on. The former refers to the collection
of data sampled from the environment having clear weather, and the time of
day incremented in steps of 15 and 30 min from 07:30 am until noon. A similar
interpretation applies to other such environments.

From these environments, we gathered images via automated screen capture
(simulating the camera output) whilst taxiing the aircraft on the airport runway,
using different software controllers, as well as different CNNs for perception: i.e.,
the same CNN architecture described in Sect. 3, but trained by our industrial
collaborators with data drawn from the various environments identified earlier.
In tandem, for each image, we collected true CTE (from internal simulation
variables), along with estimates of CTE and HE. We used several such data
sets, one for each of the different environments identified above, from which
data samples were drawn to build the CPDs of the DBN model. Here, note
that these data samples were not identical to those used to train and test the
CNN, even though the samples were drawn from the collection of environments
common to both the LES and the DBN.
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Fig. 3. Visualization of predicted uncertainty in true cross track error, CTE
(t)
a ,

to quantify assurance in runway centerline tracking as the assurance measure,
Pr(AssuredTaxi).

Uncertainty Quantification. Figure 3 shows the results of assurance quan-
tification for one test scenario, visualized as a probability surface overlaid on a
stretch of the runway, itself shown as a grid. The horizontal axis—discretized
using the interval boundaries for the states of CTEa (see Table 1)—gives the true
aircraft location, which is uncertain during taxiing. Thus, moving from left to
right (or vice versa) constitutes lateral aircraft movement. The vertical axis (dis-
cretized into 6 steps, each of duration 0.33 s) represents the number of time slices
for which the DBN model is unrolled. We selected this based on the time taken
for the UAS to laterally depart the runway after violating the 2m bound, given:
runway dimensions, maximum allowed taxiing speed, and other constraints on
the UAS dynamics, e.g., non-accelerating taxiing.

At t = 0, the horizontal axis gives the aircraft location at the current time.
The time steps t = 1, . . . , 6 are lookahead times for which the horizontal axis
gives the predicted location of the aircraft relative to the centerline, given the
CNN estimates of CTE and HE at t = 0. Thus, moving from the bottom to the
top of Fig. 3 represents forward taxiing, i.e., the temporal evolution of aircraft
position over the runway. Each cell of the grid formed by discretizing the two axes
is, therefore, a state of CTEa at a given time, shaded such that darker shades

Fig. 4. Pr(AssuredTaxi) for offset = 2 m and offset = 1.43 m.



Quantifying Assurance in Learning-Enabled Systems 279

indicate lower uncertainty (or higher confidence) and lighter shades indicate
higher uncertainty (or lower confidence). Thus, the row at t = 0 shows the DBN
estimate of uncertainty over CTEa at the current time. Similarly, each row for
t = 1, . . . , 5 shows the predicted uncertainty over CTEa for those lookahead
times, given that the last known values for the observed variables are at t =
0. The solid white line in Fig. 3 at t = 0 is ground truth, i.e., the true CTE
at the current time based on internal simulation variables. Although this may
not be otherwise available during taxiing, we show it here primarily for model
validation, i.e., to show that the interval (state of CTEa) estimated by the DBN
to be the least uncertain is also the one that includes the ground truth. The solid
black line is CTE as estimated by the CNN (i.e., CTEe) at the current time.

Recall that assured taxiing involves maintaining CTEa between a 2m lateral
offset on either side of the centerline. To quantify assurance in this property, we
sum up the probability mass in each cell between the two offsets. Figure 4 shows
the assurance measure, Pr(|CTE(t=0)

a | < offset) computed for two different
offset values: 2m and 1.43m.7 The interval [−2, 2] is a Bayesian credible interval
within which the true CTE lies with probability ≈ 95%, based on Fig. 4. In
other words, the DBN model is ≈95% confident that the aircraft is truly located
within 2m of the runway centerline. In general, the expected (and desired) DBN
behavior is to be more uncertain over longer term assurance forecasts, when there
are no additional observations with which to update the posterior distributions
on the assurance measures.

Sufficient Assurance. We must select a threshold on the assurance measure
to establish what sufficient assurance constitutes, based on which we can assert
whether or not the assurance claim holds. The criterion we have selected here is:
when the DBN is ≥30% confident that the true UAS location exceeds the allowed
lateral offset, the assurance claim does not hold, i.e., Pr(|CTE(t)

a | ≥ 2m) ≥ 0.3 ⇒
¬(AssuredTaxi). We determined this threshold under conservative assumptions
about vehicle behavior, leveraging the engineering judgment of our industry
collaborators, to balance the tradeoff between safety (avoiding runway overrun)
and mission effectiveness (not stopping too often).

5 Discussion

We now evaluate how the DBN performs relative to the LES, in the context of
ground truth. The intent is to show that it is a reasonable (i.e., valid) reference
model of the system suitable for runtime use (i.e., simple and abstract), based on
which to make certain decisions, e.g., whether or not to stop taxiing. Moreover,
we must also show that the software implementation of the DBN can be relied
upon. In this paper, we primarily address the former, leaving the latter for future
work.

7 The introduction of a second offset was motivated by our industry collaborators to
integrate the assurance measure on the LES platform.
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Validity. We compare how well the DBN and the LES can discriminate between
true positive and true negative situations when their respective outputs are trans-
formed into a classification on a plurality of image data drawn from multiple
simulated taxiing scenarios for different test environments unseen by both the
DBN and the LES.

A true positive (negative) situation for the DBN is one where it indicates
that the assurance property is satisfied (not satisfied) based on the criterion for
sufficient assurance (see Sect. 4), and ground truth data also indicates that it
is truly the case that the UAS location is within (exceeds) the allowed lateral
offset from the runway centerline. Likewise for the LES, a true negative (positive)
situation is one where the CNN estimate of CTE indicates (does not indicate)
an offset violation i.e., CTEe ≥ 2m (equivalently, CTEe < 2m), and so does
ground truth data.

Table 2. DBN Performance evaluation for runway centerline tracking.

Table 2 shows our evaluation results in terms of sensitivity (true positive
rate) and the specificity (true negative rate) of both the DBN model and the
LES, varying the embedded CNN used for perception. The variability arises
from using CNNs trained under two different training environments. We also
used these training environments to build the DBN for both LES variants using
≈37000 image samples. These samples were not the same as those that were used
to train the CNN variants: indeed, we did not have access to the actual training
data for the different CNNs. Also, the test environments listed in the table (and,
therefore, the resulting test data), are unseen during the development of both
LES variants, and the DBN models of the same.

Based on Table 2, in the context of the sensitivity and specificity metrics
shown, as well as the criterion for sufficient assurance, we are cautiously opti-
mistic in claiming that the DBN models the LES reasonably well. For the test
environments “Clear at 11:45 am”, and “Overcast at 12:15 pm”, the DBN has
a lower sensitivity than the LES, however its specificity is substantially better.
This suggests that the LES may be biased in its estimates of CTE for those
operating conditions.
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Suitability. The DBN model structure—in particular, the conditional inde-
pendence relations encoded by the structure—is informed by (our knowledge of)
the causal impacts of the identified variables and the system dynamics, and the
resulting assumptions. We note that it is always possible to relax these assump-
tions and learn the DBN structure as well as its parameters. However, in most
cases, especially when there is limited data available, structure learning can be
an unidentifiable problem, or can produce a non-unique solution. In our case, the
conditional independence assumptions used have turned out to be neither too
strong to affect model performance nor too conservative to impose a problem in
identifying the CPDs given limited data.

Our assessment in Table 2 does not compare the DBN and the CNN that
estimates CTE. Indeed, the latter is a learned, static regression function for
a component, that associates a vector of real values with a real-valued scalar,
whereas here we are assessing a stochastic process model of a (learning-enabled)
system (i.e., the DBN) against the system itself. When we use the DBN for
runtime assurance, we implement it as a software component integrated into the
LES. This can be viewed as an item to which we can apply our own assurance
methodology, i.e., as in Sect. 2, and [7]. Thus, although we have not formulated
assurance properties for the DBN, sensitivity and specificity are probabilistic
performance metrics (albeit in a frequentist sense) that we can view as assurance
measures in their own right, that we have now applied to our model.

The validation above is admittedly not exhaustive although the following
observations are worth noting: the DBN is a relatively simple and abstract
model of the time-series evolution of the system, whose estimates can be updated
through Bayesian inference given observed data. Thus, it is amenable to applying
other verification techniques including inspection, and formal verification.

Moreover, the DBN does not produce point estimates of CTE; rather, in
quantifying confidence in a system-level assurance property, a by-product is the
uncertainty in true CTE given as a probability distribution over the range of
admissible values of CTEa. Thus, in unseen situations where the CNN can pro-
duce an inaccurate estimate of CTE (see Fig. 3), the DBN gives a distribution
over possible values of true CTE. As such, it is more conservative in potentially
unsafe scenarios. Based on this assessment, we submit that the DBN is a rea-
sonable and suitable runtime reference model of the LES for the autonomous
taxiing application, when used for centerline tracking.

Utility. A key advantage of an abstract assurance quantification model is a small
implementation footprint for runtime integration into the LES. As indicated in
Sect. 1, one of the primary motivations for quantified assurance measures is to
provide feedback signals (in a computable form) to the LES, that can be acted
on, e.g., by a Contingency Management System (CMS), in operation. In this
work, the assurance measure values were translated into commands to either
stop, slow down, or continue based on i) the chosen decision thresholds (Sect. 4),
and ii) a simple model of the system-level effect (i.e., likelihood of lateral runway
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overrun) given the assurance measure and current system state.8 In general,
deciding between a series of options in the presence of conflicting and uncertain
outcomes is a special case of decision making under uncertainty [14]. We plan
to investigate such techniques as future work to develop a principled approach
to contingency management using assurance measures.

The aim of run-time assurance, also known as run-time verification, is to
provide updates as to whether a system satisfies specified properties as it executes
[15]. This is done using a run-time monitor, which evaluates the property using
values extracted from the state of the system and its environment. In a sense,
therefore, the notion of assurance measure we have described here is a kind of
monitor. However, it is worth making several distinctions. A monitor relates
directly to properties of the system, whereas an assurance measure characterizes
confidence in our knowledge of such properties. Second, an assurance measure
seeks to aggregate a range of sources of information, including monitors. Thus
it can be seen as a form of data fusion. Third, monitors typically provide values
that relate to the current state of the system, whereas the assurance measures
we have defined are predictive, intended to give a probabilistic quantification on
dependability attributes.

In general, our approach to assurance quantification admits other models
including runtime monitors: recall that the node D(t) in Fig. 2 is a runtime
monitor detecting data distribution shift in the input image at time t. Indeed,
our framework is not intended to replace runtime verification, and the assurance
measures generated show the assurance contribution of the runtime monitors,
additionally providing an assurance/uncertainty forecast. We are not aware of
existing runtime verification techniques that do this.

6 Related Work

The work in this paper is closely related to our earlier research on assurance case
confidence quantification [5]. There, although confidence estimation in an assur-
ance claim also uses Bayesian techniques, it relies primarily on the argument
structure to build the model. Similarly, based on the structure of an argument,
the use of an evidential theory basis has been explored for confidence quantifi-
cation in assurance claims [6]. However, neither work has been applied to LES
assurance quantification. Moreover, in this paper the focus is on those properties
where quantification is possible, relying upon models of the system that can be
assessed against objective, measured data.

This paper is a natural extension of our prior work on quantifying assurance
in ML components [7]: the assurance property we consider there is CTEe accu-
racy. Assurance quantification then entails using Gaussian processs (GPs) to
determine the uncertainty in the error of CTEe, which is inversely proportional
to accuracy. However, the data used are not (and need not be) time dependent
8 Although the content of integrating assurance measures with a CMS is very closely

related to the work here, it is not in scope for this paper, and will be the topic of a
forthcoming article.
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and the model used applies regardless of whether or not the aircraft position has
violated AssuredTaxi. Indeed, despite a high assurance CNN that accurately
estimates CTE, it is nevertheless possible to violate AssuredTaxi. However, in
this paper we model the LES as a stochastic process, including any runtime
mitigations, e.g., a monitor for detection OOD images. As such, the models used
for UQ are a generalization of that in [7] to time-series behavior.

As previously indicated (Sect. 1), one of the motivations is to support
dynamic assurance cases (ACs). Our prior work [4] first explored this concept,
which has subsequently been tailored for so-called self-adaptive software [16].
Again, neither work has considered LESs, although self-adaptation is one of the
properties that LESs can exhibit. In [4], confidence quantification has been sit-
uated as a core principle of dynamic assurance which has also motivated this
paper to an appreciable degree. However, that work relies on the quantification
methodology in [5]. In [16], assurance quantification employs probabilistic model
checking, which can be leveraged for LESs if they can be represented using state-
space models, e.g., as in [17] which uses hybrid model checking instead. Neither
technique is incompatible with the stochastic processes-based modeling approach
that we have adopted. As such, they may be a candidate means to check prop-
erties of the stochastic models that we build as a means of (meta-)assurance.

Dynamic safety management as an assurance concept has also been pro-
posed as a run-time assurance method [18], but it is largely speculative about
applicability for LESs. The idea of requirements-aware runtime models [19] is
very closely related to our notion of building a reference model. Quantified and
probabilistic guarantees in reinforcement learning have been explored in devel-
oping assured ML components in [20]. That work is also closely related to what
we have presented here, though its focus is mainly on assurance of correctness
properties that have a safety impact. Additionally, the assurance approach there
is intrusive in the sense that the ML component being built is modified. In
our case, assurance quantification does not modify the ML components. Bench-
marking of uncertainty estimation techniques [21] has also been investigated,
although mainly in the context of image classification. It is unclear if the reported
results translate to assurance quantification as applied in this paper. However,
the benchmarking principles and metrics used could be candidates for evaluating
various system models built using our approach.

Kalman filters have long been used to address uncertainty during state esti-
mation, and have some similarities to our approach. A Kalman filters is a special
case of a DBN where amongst the main assumptions are that sensor errors are
distributed as zero mean Gaussians, and that the uncertainty does not vary
between sensing outputs. In contrast, our model uses discrete distributions,
admitting varying sensor uncertainty for each image input, in a more general
graphical model that has a different structure, whilst including detections of
OOD inputs.
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7 Conclusion and Future Work

We have described our approach to quantifiable assurance using assurance mea-
sures, run-time computations of uncertainty (conversely, confidence) in specified
assurance properties, and their application to learning-enabled systems (LESs).
Assurance measures complement design-time assurance activities, each of which
forms part of an overall dynamic assurance case (DAC). In collaboration with
system integrators from industry, we have applied our framework to an aviation
platform that employed supervised learning using a deep CNN. Collaboration
was crucial to develop the contingency management capability, which relied on
engineering judgment to tradeoff safety risk reduction and achieving performance
objectives. Feedback from the end-users (i.e., our industry collaborators) was
also essential in refining the final visualizations of the assurance measure that
we ultimately deployed in the system (based on Fig. 4). Those are intended to
provide insight into the system assurance state for safety observer crew.

We have shown that our methodology can feasibly quantify assurance in
system-level properties of an aviation domain LES, though we have used clas-
sical UQ techniques. Our work in quantifying assurance in LESs is ongoing,
and we will be developing assurance measures for other autonomous platforms
in the context of more complex mission objectives that require additional ML
components and learning schemes.

The work in this paper is one strand of our overall approach to assurance
through DACs. The diverse components of an assurance case, including struc-
tured arguments, safety architecture [22], as well as the assurance measures
described here, each represent one facet of an integrated DAC. There are close
connections between the probabilistic models underlying assurance measures and
the safety architecture, as well as between assurance properties and claims in an
assurance arguments. Our future work will place these connections on a rigorous
basis. In part, this can be achieved through use of a high-level domain-specific
language (DSL) that will let us i) abstract from the details of the individual
probabilistic models, and ii) conversely, allow compilation into a range of dif-
ferent models, whilst making more explicit the connections to domain concepts
used elsewhere in the assurance case.

A related avenue of future work is providing comprehensive assurance for our
approach itself, and in turn, the assurance measures produced. From a verifica-
tion standpoint, we can consider correctness properties entailing i) consistency
between the quantification model and the other DAC components, e.g., the risk
scenarios captured by a safety architecture, and ii) correctness of the low-level
implementation against the higher level specification embodied by the quantifi-
cation model.

Additionally, assurance measure validity is related, in part, to the limits of
the statistical techniques used to infer the underpinning stochastic models, and
the data used to build them.

Indeed, one of the challenges we faced in this work was obtaining sufficient
useful data. Moreover, the quality of the data gathered also plays a key role
in corroborating that the assurance quantification models sufficiently represent
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the system behavior across its intended operational profile. We believe that a
more principled approach to specifying a variety of training data should be
possible (e.g., to include various types of perturbed and adversarial inputs),
and that such specifications could be derived from the DSL used to specify the
assurance measures themselves. The dynamic nature of assurance cases (ACs)
will also bear further investigation, to see how real-time updates provided by
assurance measures during a mission can inform updates between missions, to
the qualitative arguments of ACs.
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Abstract. European and national initiatives, as well as changes in the standards,
have led to a dramatic increase in the demand for interconnected medical devices
during the last few years. In addition to the increased connectivity of devices in a
larger network, economic reasons demand for AI (artificial intelligence) enhanced
support functions even in the medical devices domain. Both connectivity and the
usage of AI in safety-relevant devices are the basis for new and additional chal-
lenges for the manufacturers. The more devices become networked, the more
they become targets of cyber-attacks. This means that safety of medical devices
can no longer be guaranteed without adequate cyber-security measures. These
cyber-security measures must cover the whole design of the devices including
their internal neural networks to ensure that the inferences are free from influ-
ences from attackers. Modern, advanced attack vectors demand for very advanced
countermeasures to ensure or even increase cyber-security of medical devices in
this environment. This industrial experience paper will show the required concert
of measures that is accompanied by a security informed safety analysis from the
earliest steps of development to increase general safety and security in the design
of a modern intensive care ventilator.

Keywords: Medical devices · Neural networks · AI · CNN · DNN ·
Cyber-security · Systems engineering · Safety-informed security · STPA-SafeSec

1 Introduction

The number of attacks on IT systems continuously increases with a steeper or even
dramatic increase in the recent years [1]. In parallel do European and national initiatives
push towards connectivity of medical devices. Some markets and the new standard for
intensive care ventilators require connectivity. Cyber-security threats and the demand
for interconnection of devices requires intensive consideration during the development
of devices. Open standards should be used for data interfaces.

As cyber-security vulnerabilities in devices can severely affect safety, good cyber-
security practice is required for certification of medical devices. Motivation, skills,
required knowledge, and access of an attacker are not questioned. Existing vulnera-
bilities will be exploited in a health-care environment. The exploit may be a starting
point for an attack on the device or on other devices in the network. (See the attack
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on the braking system of a car via the entertainment system [2]). Traffic from a device
inside a network is often viewed as trustworthy and fewer checks are performed on it.

Risk management must shift from a safety centered focus towards a more cyber-
security oriented one [3, 4] to adequately consider vulnerabilities and sophisticated
attacks. Security engineering, as part of systems engineering, ensures that security prin-
ciples, concepts,methods, and practices are applied during design and life cycle. Systems
security engineering aims to protect the assets of a system by a) hardening the system,
b) making the system survivable, and c) limiting damage to the system.

This industrial experience reportwill describewhichmeasureswere taken to increase
cyber-security during the design of a new intensive care ventilator system. The paper is
organized as follows: The next chapter identifies the cyber-security threats found during
the design of the medical ventilator system. Section 3 describes the measures taken in
hardware to mitigate the threats. Section 4 highlights the software measures used for
threat mitigation. The report concludes with a summary.

2 Cyber-Security Threats

Asmodern devices often are permanently connected to a network, they have to cope with
the resultant threats. Designs shall at least avoid default passwords, weak encryption,
and easy to crack authentication. It is of utmost importance to never compromise the
essential function of a medical device. An essential function is the function or capability
that is required to maintain basic safety, essential performance, a minimum of clini-
cal functionality (specified by the manufacturer), and operational availability for the
medical device [22, 23]. The devices have to continue their operation and deliver their
performance according to the current settings i.e. continue the current therapy. Values
and curves have to be in accordance with the actual measurements. Therapy decisions
based on wrong values may lead to harm to the patient.

STPA-SafeSec is used for combined safety and security analysis and to include both
safety and cyber-security into risk management. This holistic analysis approach helps to
identify potential hazards in every step of the design [4], ensures better (optimal) design
decisions [3–5], helps to optimize the design, and guarantees best possible output [5].
Safety is no longer given without security. Both have to be considered and built-in by
design. A risk analysis resolves the conflict if safety and security considerations result in
conflicting requirements. In the resulting trade-off between the two, there is a tendency
towards safety in order to maximize patient safety.

A security analysis considers all external connections and consequences of attacks.
A ventilator has interfaces for software update, remote alarm systems, legacy interfaces,
connections to other devices, connections to hospital information systems, and sensor
connections. Interfaces are the destination of an attack or are the entry point for an attack
on other parts of a system e.g. a device’s neural network or its control part.

The demand for support from neural networks increases with the increase of budget
pressure, lack of time for intensive care, and lack of personnel. It is estimated that billions
of Euros can be saved because of better analysis of risk factors and earlier reaction on
pre-indicators or alarm signals that identify beginning diseases, development of com-
plications, or slow increase of severity of an already existing disease. Diagnosis may be
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exacter and faster with the support of artificial intelligence enhanced devices in general.
Specialized hardware has reduced the time required for training from weeks to a few
hours, enabling more sophisticated networks and new applications. Since 2019 neural
networks are marketed not only to provide proposals for treatment but also for clinical
decisions. Widespread use for other decisions and closed-loop controls is expected. Risk
management can no longer rely on the judgement of a human in the loop as the output
of neural networks is directly used for the next steps. This may require a safety system
if the output may cause harm to a patient. The importance of cyber-security increases.
The neural networks must never be the weakest link in the security chain.

We consider the whole signal processing chain except sensors and actuators that can
only be tampered after opening the device.We protect the respective control loop instead.
Sensors connected via plugs or provided by other systems are considered thoroughly as
sensor data may be tampered to let the control loop become unstable. Even interfaces
intended for read-only access may introduce vulnerabilities as they may allow random
code execution or access to all parts of a system. Software update requires at least two-
factor authentication and only allows update but no downgrade. Updates may only be
performed if no patient is connected and only verified and certified code is allowed for
execution. Data should be encrypted to guarantee authenticity and integrity. There is no
interface backward compatibility. Successful attacks already exploited vulnerabilities
re-introduced by a software downgrade or backward compatibility.

3 Hardware Measures for Threat Mitigation

A concerted approach of hardware and software measures is used to fulfill the require-
ments from the STPA-SafeSec analysis and to increase both safety and security. Hard-
ware measures cover as much as possible of the interfaces and the complete signal
processing chain. All unused interfaces are disabled. Security starts with system boot,
as a root of trust is required to ensure running un-compromised software only. During
a high assurance boot, the boot-loader checks its own integrity and integrity and sig-
nature of the operating system and applications. The processor only executes code that
is signed with a valid certificate stored in its secure memory. Execution prevention of
random code is ensured. Data written or read from external devices is encrypted and
its validity and integrity is checked. Hardware measures protect the inputs of the sys-
tem. The connection of internal sensors cannot be changed without changing/damaging
the device. Sensors users can connect, identify themselves and protect the sequence of
data to ensure authenticity and correct order. Measures prohibit tampering of their data.
Remote sensors identify themselves by device and sensor ID. Signals are encoded to
defend against attacks that involve faking sensor signals and replay attacks. The new
generation of sensors even supports pre-processing of data within the sensor to off-load
the device (more computing power available for security features). Some sensors are
realized redundantly to detect faulty sensors and wrong control actions. The validity of
other (e.g. pressure) sensor outputs is checked by combining the outputs of second and
additional (e.g. second pressure + flow) sensors.

Hardening the control system to provide breathing gas, one of the main parts of a
ventilator, covers the complete signal processing chain including sensors, pre-processing
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of data, the inference of the neural network, and actuators. An attack resulting in the
control system assuming wrong or delayed actuator behavior can render the system
unstable [9, 10]. If it is not possible to avoid tampering, measures have to be taken
to detect it. Actuators either provide direct status feedback (e.g. a valve position) or
feedback is provided via the current the actuator draws. Actuators are checked to judge
whether the signals received from the sensors are plausible and whether they behave as
expected. The response of the sensors indicates the expected change of the controlled
parameter and can therefore be verified against an expected response.

A secure FPGA is used to realize the neural network since to harden the complete
control loop requires to protect the computation of the controller. It uses an encrypted
and protected input stream to avoid malicious configuration with wrong/tampered input.
The configuration bit-stream is stored in special chips. These chips have individual iden-
tification registers that are also used to encrypt and protect the configuration data. To an
attacker, every bit-stream looks different because of the chips’ unique identification bits.
This prevents simple copying of the content. During configuration, the FPGA performs
an “Identification Friend or Foe” process. Only if this process is successful, the FPGA
is configured and performs as expected. The internal memory of the FPGA, especially
the part used for purposes of the neural network, is configured to be an error-correcting
memory (ECC memory) and is write-protected during normal use. Weights, activation
functions and code are stored in ECC memory to protect them against random bit flips
caused by attacks (and other external influences).

Safety-relevant inputs are read-in via two different channels. Safety-relevant out-
puts are checked against the outputs of a second system. The second system will detect
wrong and unexpected outputs andwill keep the system in the safe operation area by issu-
ing the appropriate commands. The second system may be realized as identical system
or as hardware and/or software diverse system. A second system sometimes is required
to reach a defined safety level and may help to defend against cyber-attacks. A neural
network, even with different architecture, acting as second system for another neural
network is not preferred as both of them would be susceptible to the same adversarial
attack patterns. Adversarial patches constructed for one type of neural network [8, 16]
are also able to attack other types of neural networks. They perform a kind of black-box
attack. To avoid attacks affecting both channels, the second channel has to use a differ-
ent technology e.g. a very different classifier. The usage of a random forest classifier
for online detection of certain main features has turned out to be a good choice for the
ventilator design. Random forest is a tree-based algorithm suitable for multi-value clas-
sification and regression. It can classify objects with high accuracy and detection rate,
is relatively robust, and not affected by the same adversarial patterns. Our hardware and
software diverse solution uses heuristics to check inputs and outputs of the main neural
network in parallel to the random forest classifier.

The probability for amismatch between the random forest classifier and the neural
network increases with the size of the detection classes. One may have to narrow down
the detection space to only detect themost important andmost critical pattern. Additional
classifiersmay be implemented to detectmore patterns and reduce the probability of false
negatives. Where possible, the outputs of the neural network and of a small rule-based
system are compared. A set of few, very simple rules such as pressure at a certain level
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and tidal volume below a threshold or resistance above a threshold are used to verify
the output and to check for plausibility of the inference. In addition, out-of-bounds
detection to detect signals at or above defined boundaries or physiological values is
used. The confidence indicator is modified on a detected mismatch between the output
of the neural network and the results of the second channel.

Neural networks explore a rather large high-dimensional search space. Training
data typically is only concentrated in a relatively small area of this search space. Small
perturbations can easily nudge the input to a point the network has never seen before.
Carefully crafted noise added to input signals can make the network recognize it as
something different or something defined by an attacker. Such attacks work in every
domain [8, 13, 16]. The easiest way to defend against them is to filter the inputs or to
make the neural network process otherwise pre-processed data. We use high-pass filters,
band-pass filters, and fast Fourier transforms (FFT) on some inputs to let the network
process data in the frequency domain. This effectively eliminates the (adversarial) noise
and is easy to implement in FPGA hardware. Although neural networks are non-linear,
the activation function ReLU (rectifier linear unit) is linear from 0 on. ReLU eases
training but may be pushed to relatively high values. It increases the attack surface as it
allows prediction of the (linear) results. The non-linear sigmoid or hyperbolic tangent
(tanh) activation functions are preferable. It ismuch harder to predict the inference results
for non-linear activation functions. The downside of the chosen tanh activation function
is that the learning phase takes longer. But Shanuel’s conjecture [7] is still fulfilled and
mathematical proofs are still possible.

Defending against small perturbations alone is insufficient because larger local per-
turbations can also break classifiers [8]. The larger perturbations exploit the way classi-
fication tasks are constructed. While the data to be analyzed may contain several items,
only one target label is considered true, and the network must learn to detect the most
“salient” item. The attack exploits this feature by producing inputs much more salient
than items in the real world. We use a technique known as defensive distillation [15]
to protect against this. Distillation increases the resilience to adversarial perturbations
with only marginal influence on detection capabilities. A distillation procedure transfers
knowledge form larger deep neural network (DNN) to smaller ones. It requires a trained
larger DNN with a softmax output layer. A softmax layer normalizes the output of the
last hidden layer into a probability vector F(X), assigning a probability to each class
for input X. Its parameter called temperature plays a central role. A high temperature
forces probability vectors with relatively large (similar) values for each class. For a DNN
with N outputs, the probability vector will converge to 1/N for T → ∞. The smaller
the temperature, the more discrete the probability distribution will be. The probability
vectors are used to label training data. The label been called soft labels as opposed to
hard class labels. The smaller DNN is then trained at high softmax temperature using
a combination of soft and hard class labels. This allows it to benefit from both types of
labels and to converge towards an optimal solution. The soft labels encode additional
knowledge, namely the relative difference between classes. This allows better gener-
alization around training points thus increasing robustness. The best temperature for
the distillation process is selected in an iterative approach. Different temperatures are
tried, and the results are compared. The optimal temperature is the best compromise
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between reduction in detection rate and resilience to adversarial perturbations. During
normal operation the temperature is set back to allow discrete probability vectors during
classification. Distillation has the advantage to reduce the size of DNN architectures or
ensembles of DNN architectures and their computing resource needs without loss of
accuracy. In addition, it reduces gradients used in adversarial sample creation by about
a factor of 1030. The minimum number of items to be modified to create adversarial
samples is increased by nearly a factor of eight. The detection problem for the medical
ventilator is comparable to the detection problem of the MNIST data set. Therefore, we
achieve comparable results with detection rates above 99%.
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Fig. 1. Success rate of adversarial attacks vs. distillation temperature T.

4 Software Measures for Threat Mitigation

To enhance cyber-security defense, a combination of redundancy, diversity, and harden-
ing [21] reduces the attack surface as far as possible. Different threats call for different
measures and weaknesses of measures should be as “complimentary” as possible [20].
Of course, the standard measures such as stack randomization and running tasks at
different privilege levels are implemented. Closed-loop controls using data from other
medical devices fall back to a local operating mode if the connection is lost or an attack
is detected. Unfortunately, it was found that the only possible defense against some
attacks such as “arp flooding” is to shut-down the respective interface. This effectively
is a denial of service of this interface (at least for a certain amount of time) but prevents
a denial of service of the complete system.

To decrease the attack surface, code that is not used during normal operation is
compiled-out of the firmware. This is code used for testing, for simulating inputs, for
debugging, or to train a neural network. Simulation or demomodes onlywork in a special
mode of the device, which does not permit patient connection. To minimize the attack
surface, partial reconfiguration of FPGAs should not be used whenever possible to avoid
denial of service (DoS) attacks by applying the wrong configuration for a certain mode
of operation. Secure, encrypted storage of configuration data is mandatory to detect and
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prevent any change in the configuration. Data confidentiality is increased by avoiding
storage of data as far as possible. Non-frequently used data is requested from the hospital
information system instead of storing it on the machine.

Check tasks are one of the hardening measures. The task run in standby mode
applies several test-patterns and checks the responses of the important system compo-
nents, including the neural network, against known answers [6].Another check task is run
during normal operation and closely works together with the device’s so-called safety-
system. Heuristics, plausibility checks, and values from redundant or diverse systems
are used to check the correct function of the (sub-) system under test. Safety-relevant
subsystems use canaries around their data to indicate a possible change. Weights, acti-
vation functions, and code of the neural network are in write-protected memory. Their
syndrome and the canaries are checked on a regular basis to detect any change. Heuris-
tics, checking for out-of-bounds values, and checking against a small number of training
patterns are used to double-check the inference outputs [6].

Recent advances in neural network architecture have reduced the sparsity of the
detection space by reducing the number of parameters up to a factor of 35 [11, 12].
Nevertheless, the reduction of the attack surface did not prohibit adversarial attacks.
It is mandatory to employ additional measures to avoid or at least detect an attack.
The neural network is in application mode only. It does not learn or improve during
the application. This will avoid many problems e.g. negative side effects by reward
hacking. The rewards required for unsupervised learning can cause a change of the
intended strategy towards a strategy that maximizes rewards but has negative long-term
side effects. For example, the ventilator system could change the ventilation strategy to
maximize short-term oxygenation at the expense of long-term lung damage [17, 18].

The neural network was crafted using a multi-stage approach with several itera-
tions to minimize its attack surface. An initial architecture underwent distillation and
optimization steps. In our experiments, we found that a suitable published DNN proven
to provide high accuracy for a similar task is a very good starting point. The initial
architecture used 2 convolutional layers with 32 filters and a max pooling layer, 2 con-
volutional layers with 64 filters and a max pooling layer, 2 fully connected layers with
200 tanh functions and a softmax layer for 16 output classes. One reason for subsequent
iteration steps is to make the DNN fit into the target FPGA and to fulfill the perfor-
mance requirements when deployed. The initial DNN is distilled to fit into the FPGA’s
300 neurons network. Another reason is to minimize the attack surface and to increase
the robustness of the DNN [19]. Training of the initial DNN is done with great care
and carefully selected training patterns. The training set was augmented by noise added
to the pattern to be detected. The next steps only start after the accuracy of the initial
DNN is sufficiently high. Distillation steps reduce both the size of the network and the
gradient values. Weights below a certain value are electable for pruning. We found that
structured pruning might have larger effects on the accuracy of a network obtained by
distillation as it has on the initial DNN. Structured pruning of the initial DNN may not
result in a structured neural network or in a reduced number of neurons after distillation.
Results largely depend on the architecture and sometimes also on the application. Dis-
tillation uses an iterative process to find the optimal temperature. Different pruning and
optimization steps are done during additional iterations. They require additional time for
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completion but result in smaller and better implementations. The last step of the network
design is a pruning step. It is advantageous not to prune all eligible neurons to avoid
unused neurons. This will hinder an attack by activating unused neurons.

Madry et al. [14] showed that doubling the number of neurons could yield a consid-
erable effect (a plus in the range of 5% of accuracy). Smaller changes in their number
had only an insignificant effect in our experiments and in the experiments of others.
Increasing the training data or the number of layers will only slightly improve accuracy.
The largest effect on accuracy is obtained by specialization. I.e. training the network on
small parts of a task has the largest effect (e.g. for autonomous driving, use one network
to control straight cruising and use another to drive through curves).

The internal gradients and thus the attack surface were further reduced by apply-
ing additional MinMax training patterns suggested by Madry et al. [14]. This second
training step is applied to the network after the distillation, pruning, and optimization
steps. The training patterns include adversarial pattern and are kind of maximum noise
pattern added to the pattern of interest. The fast gradient sign method and the forward
derivative method can be used to create the adversarial patterns [13, 16]. Both methods
are based on the sensitivity of the differentiating functions over the architecture and the
parameters. Together with the distillation process, a significant reduction of the gradi-
ents and thus the possibility for adversarial attacks was obtained. The countermeasures
increased resilience to adversarial perturbations from about 96% to a value below 0.7‰.
This reduced possibility for successful attacks is considered acceptable for the use case.
It renders attacks to the real-time system to be infeasible.

5 Summary

The development of a medical ventilator system has been described. It has been shown
that it is a necessity to use good cyber-security development practices also throughout the
complete development ofmedical devices. The use of neural networks inmodern devices
creates special challenges to ensure cyber-security. Nevertheless, the combined use of
advanced methods and techniques can reduce the risk for the patients to an acceptable
level. Especially the combination of MinMax training patterns and defensive distillation
resulted in high robustness against adversarial attacks.

A combination of measures was used to increase the robustness of sensors against
tampering attacks. Future evaluation and feedback from the field will show whether the
sensors may require some additional kind of tamper detection to avoid processing of
tampered or faked signals. Another future improvement could be the inclusion of a BBN
(Bayesian Belief Network) into the analysis. This type of network helps to take into
account unforeseen future threats. This, of course, would come with the extra effort to
generate the required graph. Depending on the system, the extra effort can be quite high.
It is currently under investigation whether the extra effort is justified.
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Abstract. The Goal Structuring Notation (GSN) is popular among
safety engineers for modeling assurance cases. GSN elements are specified
using plain natural language text, this giving safety engineers great flexi-
bility to express their arguments. However, pure textual arguments intro-
duce ambiguities and prevent automation. Currently, assurance cases
are verified by manual reviews, which are error prone, time consuming,
and not adequate for today’s systems complexity and agile development
methodologies. In this paper we present our research tool FASTEN.Safe,
which extends GSN with a set of higher-level modeling language con-
structs capturing recurring argumentation patterns and integrating for-
mal system models. This allows automatically checking 1) the intrinsic
consistency of assurance models, 2) the consistency of arguments with
system models and 3) the verification of safety claims themselves by
using external verification tools. FASTEN.Safe is open source and allows
experimenting with language abstractions to bridge the world of GSN-
based arguments that are common among safety engineers and the world
of formal methods that enable automation. Last but not least, we report
on the preliminary experience gained with FASTEN.Safe.

Keywords: Assurance cases · GSN · NuSMV · Language engineering

1 Introduction

Explicit modeling of assurance cases supports engineers in reasoning about the
system safety and communicating with third-parties. Assurance cases are central
artifacts of the safety assurance engineering process, an explicit model of an
assurance case entailing the core of the argument that the system is safe.

The Goal Structuring Notation (GSN) is a compact graphical representation
for argumentations and one of the most prominent notations used for model-
ing assurance cases, containing a small number of constructs that are intuitive
to understand and easy to use by practitioners [1]. Using models for assurance
arguments brings structure and enables the application of well-formedness rules
c© Springer Nature Switzerland AG 2020
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– e.g., no circular reasoning is allowed. Claims within GSN elements are spec-
ified using plain natural language text, safety engineers having great flexibility
to express their arguments. However, pure text-based claims introduce ambigu-
ities and prevent automation. The only validation method of text-based claims
within assurance cases are manual reviews, this causing two challenges. First,
such reviews prove to be tedious when complex systems are built. Second, man-
ual reviews are not suitable for a more agile development mindset, where change
requests of safety critical components are frequent and their impact on the assur-
ance argument should be immediately evaluated.

In our work, we explore the way in which assurance cases can be made
checkable, yet easy to understand by practitioners. To this end, we extend GSN
language constructs with specialized constructs (DSLs) that reference formally
specified system models. This enables automated consistency checks both within
assurance cases and with the models linked therein. Further, given the integrated
automated verification engines, the verification of the satisfaction of safety claims
by the referenced system models can be triggered from the assurance case model
and the verification results lifted at the level of the assurance cases. Our long-
term vision is to make assurance case models central artefacts for starting veri-
fication activities in the context of agile development of safety-critical systems.

Contributions and Structure. The main contribution of this paper is FAS-
TEN.Safe1, a new tooling approach to build extensible and semantically rich
assurance cases that are linked with formally defined system models in order to
increase the rigour of the assurance cases specification and to enable automated
verification of assurance cases. FASTEN.Safe is an extension of FASTEN, a For-
mAl SpecificaTion ENvironment described in [9], released under EPL 1.0 license
and available on github2. The rest of the paper is organized as follows: Sect. 2
presents a set of GSN extensions that make automated checks possible, Sect. 3
describes our preliminary experience with using these extensions, in Sect. 4 we
present the related work and Sect. 5 concludes the paper.

2 Checkable Assurance Cases

To facilitate automation for safety assurance, our approach is to check the assur-
ance case directly by 1) ensuring its intrinsic consistency, 2) enabling automatic
consistency checks with system models, and 3) firing up checks of various sys-
tem aspects that are modeled outside of the assurance case itself. These checks
make the assurance case a central engineering artifact that is to be checked and
facilitates automation for safety assurance.

Running Example: Airbag of a Car. To facilitate the understanding, we
introduce in the following FASTEN.Safe features “by example”. We use system

1 https://sites.google.com/site/fastenroot/home.
2 https://github.com/mbeddr/mbeddr.formal.
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models of an airbag and integrate them with assurance case elements. The airbag
system’s main functionality is specified by the following functional requirement:
FR 01: The purpose of an airbag is to slow a vehicle occupant’s motion as
evenly as possible using a bag designed to inflate extremely quickly, then quickly
deflate during a crash scenario. Based on this requirement, a list of hazards is
derived. Hazard H1 is mitigated by implementing, among others, the following
derived safety requirement: SR 01: The airbag shall inflate only after a colli-
sion. This requirement is then refined in the system’s architecture, as described
by Arts et al. [2]. The architecture comprises a top-level component, named
airbag system, containing the following subcomponents: 1) the Sensor, which
detects collisions and sends messages encoded by an End-2-End (E2E) protection
mechanism (specific to the AUTOSAR standard) to the airbag controller, 2) the
Link that connects the components, and 3) the Device, entailing the airbag’s
controller. All components are specified in a black-box manner, the requirements
being specified via formal contracts expressed in LTL. While functional require-
ment FR 01 is formalized as post(1) collision post postcondition, postcondition
post(2) no collision formalizes safety requirement SR 01. The bus guarantees
that the airbag system functions correctly even when failures such as message
corruption and deletion occur. To express this failure model, we specify precon-
dition pre(1) collision pre.

Tool Architecture. In Fig. 1, we present an overview over our tooling platform
built using the Jetbrains’ MPS language workbench3. FASTEN.Safe is a plat-
form that allows experimentation with different modeling abstractions for the
development of safety critical systems. The tool addresses four concerns – 1) haz-
ard and risk analysis (HARA), 2) requirements specification, 3) formal modeling
of system architecture [9] and 4) safety argumentation. To enable verification of
architecture models, FASTEN.Safe integrates the NuSMV verification engine.
At its core, FASTEN.Safe features an implementation of the Goal Structuring

Fig. 1. Overview over the FASTEN DSL-stack developed using JetBrains’ MPS. FAS-
TEN integrates verification engines as external tools and provides support for their
input languages. In blue we highlight the parts that belong to FASTEN.Safe – they
comprise an implementation of GSN language and a set of patterns. Specialized GSN
entities (blue-hashed) reference formally specified elements of system models (hashed).
(Color figure online)

3 https://www.jetbrains.com/mps/.
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Notation (GSN) language. Additionally, to support automatic checks, we imple-
mented extensions of the GSN language with specific types of goals, strategies
or solutions, integrating other safety and system models.

Checkable Assurance Cases are modeled via the instantiation of a special type
of GSN-based patterns, based on state-of-the-art patterns, for which we provide
special language constructs integrated with system models, and which come with
automated checks. In the following we introduce three categories of such checks.

2.1 Type I Checks: Intrinsic Consistency of the Safety Case

GSN has rules for how to connect GSN elements among each other to obtain
a syntactically correct argumentation. However, it does not regard the seman-
tic validity of an argumentation. GSN patterns go a step further and enable a
higher intrinsic consistency since they re-use several entities together. To ensure
the validity of the arguments created via instantiation, the patterns come with
instructions on how to instantiate them. However, unless the instantiation is done
automatically, there is no guarantee that the instantiation will generate a valid
argumentation. To ensure valid instantiation of patterns, FASTEN.Safe provides
special types of GSN entities via language extensions, which may only be con-
nected via special types of connections, which extend the GSN supported by and
in context of connections. For example, the Argument over Hazards Strategy can
only be supported by sub-goals of type Hazards Mitigation Goal.

2.2 Type II Checks: Consistency with System Models

The second category of checks ensures the consistency between the assurance
case and system models. To this end, we propose specialized entities extending
GSN elements, which are integrated with different types of models, specifying
the system at different levels of abstraction (e.g., hazards, requirements, archi-
tecture). As the system models are created in the same tool as the safety case
model, deeper integration can be achieved.

Examples of patterns that may undergo such checks are arguments that all
hazards, or all safety requirements have been addressed, as proposed by Hawkins
and Kelly [7]. These patterns entail specialized GSN strategies integrated with
hazards and, respectively, requirements models. Consistency checks are then
executed on these strategies, ensuring that for each element in the list, an argu-
mentation leg exists. In Fig. 2, on the left hand side, we depict the hazards
mitigation checkable pattern; on the right hand side, we depict the patterns’
instantiation with hazards from the airbag example. The automated checks are
enabled by having specialized goals for claiming hazard mitigation – each goal
referencing a specific hazard – and specialized relationships between the strategy
and the goals. An error from our checks is triggered as the GSN model does not
contain argumentation legs regarding the mitigation of H3 and H4 hazards.
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Another example for type II checks is a pattern for arguing about the sat-
isfaction of a requirement in a contract-based design setting, entailing special-
ized GSN entities integrated with the components architecture (see Fig. 3). The
structure of this pattern reassembles the structure of the argument on compo-
nent level pattern proposed by Warg et al. [10]. Automated checks will trigger
errors given any inconsistencies between the components specified in the sys-
tem architecture and the GSN model (e.g., ensure that there is a correctness
implementation claim for each direct sub-component of the top-system).

Fig. 2. On top-left a list of hazards of an airbag is presented. On bottom-left the
checkable pattern containing specialized GSN strategy and goal is depicted, whereas
on bottom-right the instantiation of the pattern for the airbag system is presented. On
top-right the consistency checking results are displayed – in this example a check fails
since not all hazards have a corresponding Hazard Mitigation Goal.

2.3 Type III Checks: Verification of Safety Claims

The third type of checks that can be executed on an assurance case model are
verifications of the satisfaction of claims within the safety case by the referenced
system model via external verification tools. GSN elements expressing a system
property may be specialized as verifiable entities, by integrating them with the
formal specification of the respective system property. Such specialized entities
are integrated with external tools capable to verify the respective property type.
Verification goals are always supported by specialized solutions, which automat-
ically integrate the verification results whenever the verification is executed.

For example, the satisfaction of a safety requirement formalized as an assume-
guarantee contract can be reflected by a specialized strategy supported by three
main strands of argument, each comprising a specialized, checkable goal (see
Fig. 3). First, an argument about the correct refinement of the contract of the
upper-level component by the contracts of the subcomponents should exist. Con-
tract refinement checks ensure that the guarantees of an upper-level component
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is not weakened by the contracts of its subcomponents and the assumptions of
the upper-level component is strong enough to satisfy the assumptions of sub-
components (Refinement Check goal).

Second, A/G compatibility checks ensure that the composition of subcom-
ponents is consistent (Compatibility Check goal). Third, the correct implemen-
tation of each corresponding subcomponent shall be argued (Implementation
Check goal). In the case when subcomponents are hierarchical, the implementa-
tion check is again potentially performed via a CBD strategy. In the case when
subcomponents are atomic, a model checker (in our case NuSMV) is used to
verify if the implementation (an SMV module) of an atomic subcomponent sat-
isfies its contract (i.e., A → G). These goals are checkable, meaning that their
claim is checked with NuSMV and, if the verification is not successful, an error
is triggered in the assurance case editor. Each of the verification goals has a
special solution that is automatically updated with the corresponding model
checking results as evidence. Specialized solutions enable the automatic integra-
tion of NuSMV results as evidence in assurance cases, whenever the verifica-
tion is (re)executed. The verification results are interpreted and the solution’s

Fig. 3. The top-left side presents the interface definition of the airbag system in terms
of ports and contracts (pre-/postconditions) and the architectural decomposition. The
bottom side displays the GSN argument about the correct implementation of a require-
ment based on contract-based design. The argument contains specialized entities (e.g.,
CBD Strategy is a specialization of Strategy) that are linked to corresponding system
models. NuSMV can be started directly on the CBD Strategy node (right) and the
results are lifted in and reflected in the corresponding solutions.
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editor displays whether the verification is successful or not. Thereby, the safety
engineer can see at a glance which goals have been invalidated after a change
was implemented. Furthermore, a solution is annotated as outdated when either
the referenced formal models or the claims within the safety case change, thus
making the verification results stale.

3 Experience

Using the Extensions. We are currently evaluating the benefits of using checkable
assurance cases by collecting feedback from safety engineering practitioners who
used FASTEN.Safe in different projects from automotive domain and piloting
the functionality in realistic projects. The most important benefits so far seem to
be 1) the immediate feedback in the editor signalizing when assurance cases and
system models get desynchronized, and 2) the possibility to start verification
activities of claims from the assurance case itself, thereby making the trace
between system model changes and assurance cases more transparent. Further,
the feedback of practitioners is that, on longer term, based on the management
of changes on system models and the assessment of their impact on the assurance
case, our approach could support continuous verification of assurance cases, thus
enabling the integration of assurance cases in a continuous delivery pipeline.

Developing the Extensions. As presented in Sect. 2, we have created a set of
extensions of GSN constructs covering strategies and claims about hazards,
requirements, specification of safety properties via LTL and their verification
with NuSMV. These extensions suffice to express three patterns from the lit-
erature [7,10]. The language workbench MPS allows easy implementation of
extensions in a modular fashion. On the conceptual side, we are looking for
other argumentation fragments or patterns (e.g., based on safety architecture
patterns) that can be made checkable.

4 Related Work

There is a vast amount of tooling approaches for developing assurance cases [8].
To the best of our knowledge, none of the existing tools support all types of checks
(I-III). Another distinguishing characteristic of FASTEN.Safe, that allows us to
implement the checks, is that it features language extensions of GSN that raise
the abstraction level at which assurance cases are modeled. In the following, we
compare FASTEN.Safe with existing assurance case modeling tools.

The most comprehensive automation support is provided by AdvoCATE [6]
and AMASS tool platform [5], both tools supporting references from assurance
case models to other system models (e.g., hazards, requirements or system archi-
tecture). AdvoCATE supports the automated creation and assembly of assurance
arguments based on patterns instantiation, hierarchical abstraction for argu-
ments, integration of formal methods in assurance arguments and verification of
safety claims. The AMASS platform scopes at supporting assurance activities.
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For example, similarly to AdvoCATE, AMASS supports automated generation
of model-based verification evidence, based on which, via pattern instantiation,
assurance case fragments are automatically generated. While AdvoCATE and
AMASS use patterns described directly in GSN to increase automation, we lift
recurring patterns at language level via DSL abstractions. This allows us to
define a richer set of consistency checks both for ensuring the intrinsic consis-
tency of arguments and their consistency with existing system and safety models
(checks of Type I and II). Furthermore, similar to our approach, in AdvoCATE
analyses performed by external verification tools (e.g. model checkers) can be
triggered directly based on the higher level entities.

Another category of approaches aims at automated construction of assurance
cases based on system models and existing verification results. The Evidential
Tool Bus (ETB) supports the construction and maintenance of assurance cases
by automatic generation of claims and evidence from the outputs of verifica-
tion tools [4]. ENTRUST supports automatic instantiation of assurance case
patterns with information from design-time and runtime system models and
verification tools [3]. In contrast to these tools, the automation enabled in FAS-
TEN.Safe checks the argumentation constructed by the engineer and does not
re-generate entire argumentation fragments. In FASTEN.Safe changes in system
models are immediately reflected in the assurance case via failed constraints.

5 Conclusions

In this paper we presented FASTEN.Safe, which is a platform for modeling assur-
ance cases based on GSN and experimenting with semantically rich extensions
for expressing safety arguments. Our work formalizes a subset of published GSN
patterns using domain specific constructs and links them to system models that
are amenable to automated checks. Our long term goal is to make GSN-based
arguments automatically checkable. This would enable incremental safety assur-
ance via (semi-)automated maintenance of safety cases, thereby facilitating the
development of safety-critical systems in more agile settings. Next, we plan to
identify more semantically rich extensions capturing assurance case patterns and
to integrate other verification engines (e.g. for performing quantitative analyses).
Furthermore, we intend to use the tool within real-world projects.
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Abstract. Threats or attacks can be decomposed into more primitive
attacks/events by attack trees. These trees can show possible scenar-
ios of threats. In addition, the quantitative properties of attacks, called
attributes, can be integrated along with the tree structures. This paper
introduces a formal system for attack trees focusing on refinement sce-
narios, and enriches attack trees with effects of attacks, which allows the
evaluation of the validity of attack decomposition systematically. The
property that sub-attacks refine an attack is described by the relation-
ship among their effects, that is defined as consistency of a branch. Con-
sistent attack trees support a systematic approach for the entire attack
tree process. Furthermore the effects of attacks in consistent attack trees
are well-behaved as an attribute. These ideas are applied to the case
study of a vehicular network system. As an application, possible degrees
of mitigation for attacks in attack trees are discussed.

1 Introduction

Progress in information technology has contributed to the evolution of various
systems worldwide. In particular, cyber-physical systems now have more flexible
and finer functionalities, and cooperate with other systems via networks. How-
ever, security threats on these systems have also increased. Protecting a system
from security threats has become an important issue recently.

Attack trees are major tools in analyzing the security of a system. These
trees represent the decomposition of threats in the form of AND/OR-trees
(Examples are presented graphically in Fig. 1, 4), as well as fault trees represent
structures of faults in a system in safety domain. We can analyze every scenario
for a threat in a sub-tree of the attack tree [20]. Moreover we can evaluate the
quantitative properties of the threat along with the corresponding attack tree.

Simple and intuitive descriptions of attack trees allow various extensions
of the concepts. Examples include adding other types of nodes, connecting
trees expressing defenses, and specifying the maximum number of children of
c© Springer Nature Switzerland AG 2020
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a node [23]. Specifically, to distinguish causal relationships among sub-attacks,
attack trees are extended to ones with sequential conjunctions [1,8,13].

Fortunately attack trees are well formulated in some research [1,8,13,15];
formal syntax and semantics are provided, the quantitative attributes are related
to attacks formally, or attacks are linked to state transitions of the target system.
However, all the aspects of attack trees are not supported by formal approach.

In particular, relations among attacks around a branch have not been dis-
cussed thoroughly. In an attack tree, a branch represents a concretization of the
parent, another branch shows preceding events for the parent, or those are min-
gled together at the other branch. Resulting attack trees tend to be diverse, and
it is a problem from the practical viewpoint. Although there are several stud-
ies [1,2,7] dedicated to this issue, the frameworks proposed in these research
works are deemed rather indirect. Methodologies for considering the consistency
of attack trees simply are required.

This paper tackles this problem by introducing the effects of attacks. An
effect, considered as the post-condition of an event, is tightly related to an attack,
and therefore we can discuss the abstract-refinement relation around a branch
with the help of effects rather than attacks alone. Furthermore, when an attack
depends on another one, they are related with effects, that is, the effect of the
preceding attack works as the pre-condition of the subsequent attack. We define
the consistency of a branch by logical conditions in terms of effects. This app-
roach allows checking the validity of each branch in an attack tree with sequential
conjunctions. As a result, attack trees and analyses for them can be described
in more rigorous way.

In order to discuss intermediate nodes in attack trees with effects, we define
a novel semantics of attack trees. Horne et al. [8] provided a semantics of attack
tree with sequential conjunctions, which took values in the set of directed graphs
whose nodes were labeled with primitive attacks. Here, a primitive attack cor-
responds to a leaf node in an attack tree. It meant that attack trees were inter-
preted as combinations of only primitive attacks. However, the focus on this
paper is to investigate relationships among an attack and its sub-attacks, espe-
cially at intermediate nodes. Here we consider that an attack tree expresses a
collection of inseparable refinement scenarios. The semantics proposed in this
paper takes value in the powerset of sub-trees without OR branches. These sub-
trees can derive directed graphs labeled by the leaf nodes in the attack tree, and
therefore, the semantics can be related to the semantics proposed by Horne et al.

As an application of attack trees with effects, we evaluate countermeasures
and possible mitigation for attacks. A countermeasure or mitigation eliminate
some part of the consequences (i.e. effects) of attacks. Hence, the mitigated effects
and the residuals can be described as fragments of effects. It enables to link the
mitigation to the consistency of attack decomposition. To date, obtained results
are rather rough; the cancellations of effects of the sub-attacks tend to be stronger
than that of the parent. With a vehicular network system and its threats, this
paper analyzes possible countermeasures in detail from this viewpoint.
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Generally, an attack tree process for a threat consists of the following three
steps: identification of the target, tree construction, and analysis. The first step is
commonly conducted in system engineering, such as system development or risk
management. To conduct the step in a systematic way, it is possible to follow the
established methodologies like with SysML [6]. Moreover, formal analyses with
attack trees have been developed for the third step. With the use of attributes,
logical or quantitative properties of a threat are integrated according to the
tree structure, and in this way we can evaluate the threat rigorously. However,
systematic approach to the tree construction, the second step of the process,
seems to be overlooked, as we pointed ambiguous relationships among attacks.
Our results support tree constructions by observing consistency in a more direct,
simpler and formal way. As a result, all steps in the attack tree process can
be approached systematically, contributing into an improvement of attack tree
analysis.

Organization. Section 2 deals with theoretical aspects of attack trees. Attack
trees with sequential conjunctions and attributes are defined formally, after
reviewing related works. Next, we introduce the concept of effects of attacks
in Sect. 3. Consistent attack decompositions are also discussed with the use of
effects. Based on this discussion, Sect. 4 illustrates a case study on threats on
a vehicular network system. Moreover we attempt to estimate which grades are
required for mitigation against attacks in attack trees. Finally, conclusions and
future research directions are outlined in Sect. 5.

2 Attack Trees with Sequential Conjunctions

2.1 Overview of Attack Trees

Here, we review attack trees, particularly, about formal descriptions related to
this paper and practical applications of them. Comparison with fault trees used
in the safety domain are discussed in the last part of this section.

The concept of attack trees was firstly introduced by Schneier [20]. He
expressed the decomposition of an attack as an AND/OR tree, and demon-
strated several examples of evaluating of attacks using the tree. That is, an attack
was evaluated by integrating the evaluations of sub-attacks along with the tree
structure. Subsequently, this idea was formalized by Mauw and Oostdijk [15].
They specified a formal syntax of attack trees and defined the corresponding
semantics as a set of multisets consisting of primitive attacks. Moreover they
discussed the equivalence and transformations of attack trees compatible with
the semantics. They also introduced evaluations of attack trees as attributes. An
attribute was defined as a function from the nodes of an attack tree to a set,
where the function values did not conflict with AND and OR decomposition.
Indeed, the attribute of an attack in an attack tree was calculated with attribute
values of the attack’s children.

Attack trees have been applied in various domains for the purpose of attack
modelling, although in many cases, the concept was not defined formally.
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Security analyses together with attack trees were conducted for cyber-physical
systems recently. The paper [21] showed an attack tree for an implantable med-
ical device, and checked whether communication protocols for the device had
vulnerabilities or not. The paper [3] analyzed security about a railway system.
Attack tree was applied to identify detailed attack scenarios, while effect identi-
fication and risk evaluation was done with failure modes, vulnerabilities, effects
analysis (FMVEA). In EVITA [18] for the automotive domain, attack trees were
considered as major tools to identify attack scenarios and to estimate attack
potentials. However approaches to build trees were not discussed there, other
than considering abstract structures of trees. JASO TP 15002 [12] for auto-
mobiles suggested tree decompositions of selected threats to analyze how these
threats could be realized. In DO-356 [17] for the aviation domain, tree diagrams
were introduced to analyze security aspects. These diagrams were referred to as
threat trees, as they were focused on the threat condition events and vulnera-
bility events as well as attacks.

The idea of attack trees is rather simple, which allows various extensions.
Wang et al. [23] classified many variants of attack trees. Fovino and Masera [4]
enriched nodes of attack trees with related information such as assertions, vul-
nerabilities, and operations. With the enrichment, attacks or threats can be
analyzed from several viewpoints in the research. The simplicity of attack trees
also allows wider interpretations, and it means engineers may experience difficul-
ties in building attack trees. To the best of our knowledge, most related studies
have neither explicitly discussed the guidance for attack decompositions nor the
validity of decompositions in detail. Although [1,2,7] discussed this issue, their
frameworks dealt with attacks indirectly.

One of the major extensions of attack trees was to add a new type of branches,
that is, sequential conjunction. In several cases, sub-attacks of an attack have
causal dependency, and therefore it is natural to consider an attack tree together
with the order of attack executions. Attack trees with sequential conjunction
were discussed by Jhawar et al. [13] and by Horne et al. [8]. Their studies incor-
porated Mauw and Oostdijk’s formalization [15], and the multiset semantics was
extended to sets of graphs representing possible sequences of primitive attacks.
Audinot et al. [1] also focused on attack trees with sequential conjunctions. They
used pre-conditions and post-conditions of attacks for labels of nodes instead of
attacks themselves. The semantics was given as the sets of the target’s behaviors
that satisfied the corresponding pre-conditions and post-conditions. Their frame-
work shows the relationship among the parent node and its children of a branch
clearly, but actual events by attacks are not presented explicitly. Furthermore,
a transition model expressing possible behaviors in the target system should
be prepared in advance. They discussed the consistency1 of decomposition by
comparing the semantics of nodes around a branch.

In safety domain, fault trees have been used for reliability analysis of systems
since the 1960s. Fault trees were presented as AND/OR-trees as same as attack
trees, but showed causal decompositions [9,19]. In the literature, attack trees and

1 It is called correctness properties in their paper.
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fault trees were often dealt with similarly. For example interpretations were given
as sets of labels on the leaf nodes in the tree, or properties of the uppermost event
of the tree were quantitatively calculated with the properties of leaf nodes [15,19].
Moreover, with recent observation that security threats caused harms in safety-
critical systems, the integration of attack trees and fault trees were proposed [5]
to connect security analysis and safety analysis.

2.2 Formulation

We provide a formal definition of attack trees. Its syntax is defined inductively,
and the semantics represents possible scenarios of attack refinements. In the
sequel, we denote attack trees, including sequential conjunctions.

Definition 1. An attack tree is a labeled tree with three types of branches:

t ::= Lf(n) | Nd(n, op, 〈t, t, . . . , t〉),
op ::= AND | OR | SAND,

where 〈−〉 means a non-empty finite sequence of its arguments, and where the
symbol n is a label for the node, which expresses an action or an event.

Intuitively, Lf(n) corresponds to a primitive attack n, which is no longer
decomposed (a leaf node in a tree), and Nd(n′, op, 〈t1, . . . , tk〉) corresponds to an
attack n′, which has sub-attacks t1, . . . , tk with type op as its decomposition (an
intermediate node in a tree). Attack trees can be diagrammatically represented,
as illustrated in Fig. 1. The type of a branch is expressed by a gate symbol under
nodes. Around a SAND branch (“S”-marked AND gate), actions in the child
nodes are executed from left to right. The uppermost node of an attack tree is
called the root node.

We do not consider the order of children for AND or OR branches, as well
as the type of a branch having only one child. Hence the following equations are
assumed for arbitrary subtrees {tj}1≤j≤k and a subtree t:

Nd(n, op, 〈t1, . . . , ti, ti+1, . . . , tk〉)
= Nd(n, op, 〈t1, . . . , ti+1, ti, . . . , tk〉) (op ∈ {AND,OR})

Nd(n, op, 〈t〉) = Nd(n, op′, 〈t〉) (op, op′ ∈ {AND,SAND,OR}).

We denote an attack tree without OR branches as an R-tree. Intuitively, an
R-tree expresses an individual refinement scenario regarding the attack of the
root node.

A semantics [[·]] of attack trees is the function which maps an attack tree to
a multiset of R-trees.
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Definition 2. The function [[·]] on the set of attack trees is defined by the fol-
lowing rules, where t̄ = 〈t1, . . . , tm〉 and [[ t̄ ]] = ([[t1]], . . . , [[tm]]):

[[Lf(n)]] = {Lf(n)},

[[Nd(n,AND, t̄)]] = {Nd(n,AND, 〈τ1, . . . , τm〉) | (τ1, . . . , τm) ∈ [[ t̄ ]]},

[[Nd(n,SAND, t̄)]] = {Nd(n,SAND, 〈τ1, . . . , τm〉) | (τ1, . . . , τm) ∈ [[ t̄ ]]},

[[Nd(n,OR, t̄)]] =
⊔

1≤i≤n

{Nd(n,AND, 〈τ〉)|τ ∈ [[ti]]}.

The semantics is based on the idea that decompositions appearing in attack
trees are logical refinement. An OR branch is interpreted as a multiset union,
indicating this branch corresponds to a case division. An aspect of the attack
is refined, and possible detailed attacks are listed as sub-attacks. On the other
hand an AND/SAND branch is interpreted as a factorization of an attack to
sub-attacks. The collection of sub-attacks around the branch is inseparable, as a
single sub-attack in it does not invoke the original attack. The causal dependency
of attacks exists only between children of each SAND branch, and does not exist
elsewhere, especially between an attack and its sub-attacks.

Comparing our formulation (Definition 1, 2) with those in [8], syntaxes are
very similar - the difference is whether a branch is limited to binary or not. How-
ever, our semantics keeps intermediate nodes and analyses of them are available,
whereas the semantics in [8] only considers leaf nodes.

Fig. 1. Attack trees and their interpretation.
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2.3 Attributes

An attribute of an attack tree is defined as a function f from the set of nodes.
The codomain D of f is a set with the three operations μO, μA, and μS , corre-
sponding to OR, AND, and SAND, respectively. Around a branch in an attack
tree, attribute values of the child nodes are summarized with these operations.
Therefore the following equalities are required to hold (ϕ ∈ {μO, μA}):

ϕ(〈f(x1), . . . , f(xi), f(xi+1), . . . , f(xk)〉)
= ϕ(〈f(x1), . . . , f(xi+1), f(xi), . . . , f(xk)〉),

μA(〈f(x)〉) = μS(〈f(x)〉) = μO(〈f(x)〉).

One example of attributes is the minimum number of experts required to
perform an attack, discussed in [8]. When we denote the defining function
of the attribute by ν, its codomain is defined as the set of natural num-
bers N and (μO, μA, μS) = (min,Sum,max). Remark that this attribute is
assumed to be determined by the values of lower nodes rigorously. Namely,
ν(Nd(n,OR, t̄)) = min{ν(t1), . . . , ν(tk)} where t̄ = 〈t1, . . . , tk〉, and similar
equations hold for AND/SAND branches. When there is another attribute for
which we cannot have the assumption, the equalities may not be expected and
we must consider contributions for the attribute by intermediate nodes them-
selves. Such an attribute will be compatible with the semantics in Definition 2,
but not with that in [8] using only leaf nodes.

3 Validating Decompositions with Effects

3.1 Effects of Attacks

An effect is one of the major properties of an attack. It is a situation or a property
of a specific entity related to the target system, and is caused by a specific action.
Let us consider the attack “Message receive function is interfered” as an example.
After the attack, messages may be lost, the function may be unavailable, or some
irregular behaviors occur. These situations have not occurred before the attack,
and therefore it can be considered that the attack causes these situations. As
a result, we can identify the summarized situation “messages are not processed
correctly” as the effect of the attack.

Effects are also significant concepts in the areas adjacent to security. In the
safety standard ISO/IEC Guide51 [11], negative effects2 on people, property or
the environment, caused by some event are the primary issues to be avoided. In
the standard ISO 31000 [10] focused on risk management, a risk is defined as an
effect of uncertainty on objectives.

Owing to the above observation for effects, it seems reasonable that an effect
of an attack meets the following conditions:

2 Those effects are referred to as harms.
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– The effect must be directly caused by the corresponding attack; it shows a
change of the entity that the attack affects.

– Properties that hold before the attack must not be selected as effects.
– The effect occurs immediately after the corresponding attack; no other prop-

erties invoked by the attack occur before the effect occurs.

The effect of an attack can be described by propositional formulas. Logical
expressions serve as standard tools to consider relationships and operations on
properties. In particular, they allow considering refinement of properties easily.
When a property P is refined as P ′, the inference P ′ ⇒ P holds.

For an attack tree, we assign a formula expressing an effect to a node. In an
attack tree diagram, we put the round node labeled by the effect and connect it
to the corresponding attack with a blue edge (see Fig. 2).

The effect is considered as an attribute of attack trees. Let us denote the
mapping from nodes to effects by ε. The codomain of ε is the set of proposi-
tional formulas P, and the three operations are μO = ∨ (disjunction), μA = ∧
(conjunction), and μS = μρ = λ〈e1, . . . , er〉.er (the projection to the last ele-
ment). However the attribute value of the upper node is not always determined
by the attribute values of the lower nodes. Their relationship are discussed in
the next section.

As effects are strongly connected to attacks, there can be analyses of attack
trees with use of effects. One possibility is the treatment of threats. The treat-
ment cancels some part of the effects of an attack, and hence the effectiveness of
treatment can be evaluated. In Sect. 4.3, some properties about treatments are
observed and applied in the case study.

3.2 Consistent Branches

As a branch in an adequately constructed attack tree represents a decomposi-
tion of the attack corresponding to the parent node, a similar structure can be
expected with regard to effects around the branch. For instance, the effect of
the parent node will include the conjunction of all effects of the child nodes for
an AND branch, as all of the attacks corresponding to the child nodes are con-
ducted. By contrast, when there are several conflicts among the effects around
a branch, the decomposition of the attack will have inconsistencies, such as mis-
understanding of the situation, or inadequate refinement. To analyze whether an
attack decomposition is valid or not, we introduce the consistency of a branch
with the assigned effects as follows.

Definition 3. A branch in an attack tree is defined as consistent, if the condi-
tion below holds regarding its type, where eP is the effect assigned to the parent
node and e1, e2, . . . , er are the effects assigned to the children:

– OR branch: the effect of the parent is inferred from the effect of each child
node, i.e. ei ⇒ eP for each i.

– AND branch: the effect of the parent is inferred from the conjunction of the
effects of all children, i.e.,

∧
i ei ⇒ eP .
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– SAND branch: the effect ek is obtained by the k-th attack from the left with
assumption e1, . . . , ek−1, and eP is inferred from the rightmost effect er.

These conditions are depicted in Fig. 2.
If all branches in an attack tree are consistent, then the entire attack tree is

consistent.

Fig. 2. Consistency of attacks with effects.

Actual examples of attack trees with effects are provided in Sect. 4.2.
As an attribute, effects behave appropriately for a consistent attack tree. The

following property is induced straightforwardly.

Proposition 1. Consider the attribute ε as defined above, and take a branch in
a consistent attack tree where eP , [resp. e1, e2, . . . , er] is the value of ε for the
parent [resp. children]. Then the inference ν(〈e1, . . . , er〉) ⇒ eP holds for ν = ∨
[resp. ∧, μρ] if the branch is an OR [resp. AND, SAND].

Remark that it is evident that the effect of the root node can be inferred
with the effects of the leaf nodes.

4 Case Study

4.1 Process Overview

The security analysis process specified in JASO TP15002 [12] consists of the
following five phases: ToE (Target of Evaluation) Definition, Threat analysis,
Risk assessment, Define security objectives, and Security requirement selection.
In [14], the authors studied concepts and their relationship appearing in the
process in detail. It allows refactoring activities and the data dealt with in the
security analysis process.

A deliverable of the Risk assessment phase is a list of identified threats on
ToE. Threats in this list are prioritized, and significant ones are analyzed in
depth using tree diagrams. Countermeasure goals for the threats are discussed
in the Define security objective phase.
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4.2 Verifying Decompositions

Based on the model in [16], a vehicular network system can be specified as ToE
(see Fig. 3). Each module inside the vehicle has its own assets. For example, the
assets of the Powertrain module are Control function, Authentication function,
Authentication information, and Sensor information.

Here, we consider the identified threat “Authentication function in Power-
train is interfered via TPMS3.” It is estimated significant because the target
(Powertrain) is closer to the entry point (TPMS), and the potential damage to
the vehicle system is more severe.

Fig. 3. The network architecture of ToE.

Figure 4(a) shows an early version of the attack tree (only the upper part
is outlined). It should be noted that attacks on node labels include the events
that contribute to invoking the parent but are not performed by the attacker.
Policies and methods used to construct the tree are rather abstract. Therefore
sub-attacks of an attack are intuitively selected; some of sub-attacks do not refine
the parent but are expected to occur preceding to the parent. Here, decompo-
sition is interpreted as causal ones implicitly. Moreover only OR and AND
branches are considered. As a result, the following two inconsistencies are found:

1. A temporal-gap among attacks around a branch. The attack A1 has to
occur before its parent A0, but the attacks A2 and its parent A0 occur
simultaneously.

2. A violated refinement order. The Msg. identification function in A1 refines
the Authentication function in A0, whereas Powertrain Software mentioned
in A1.1 is a wider entity than Msg. identification function in A1.

These un-structural situations are made explicit by considering the effects of
attacks. As mentioned in Sect. 3.1, effects are changes in ToE and its environment
caused by specific actions. Here, we identify the entities affected by attacks,
and decide effects on them derived from the attacks. The result is illustrated in

3 Tire Pressure Monitoring System.
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Fig. 4. Improvement of an attack tree.

Fig. 4(b). As the non-availability of a sub-function (the effect of A2) is an instance
of unintended behaviors (the effect of A0), their occurrences are not separate,
i.e. E2 ⇒ E0 holds. On one hand, the existence of adverse software (the effect
of A1) does not mean the appearance of unintended behaviors immediately, i.e.
E1 ⇒ E0 does not hold. It shows that A1 breaks the consistency of the OR
branch under A0. Moreover, the branch under A1 is inconsistent, as the fact
Powertrain Software is invalid does not imply that Msg. identification function
is invalid.
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The revised version of the attack tree is outlined in Fig. 4(c). The sec-
ond inconsistency mentioned above is simply resolved by emphasizing the tar-
get(A1.1.1). We modify the node A1 and add a SAND branch under it to ensure
consistency. At last all branches are consistent in this tree, and the entire attack
tree is consistent, as well.

4.3 The Degrees of Possible Mitigation

Attacks can be treated by countermeasures. A countermeasures prevents an
attack or modifies its results, and therefore it mitigates the effect of the attack.
When the original effect e is weakened to e′, e can be expressed as e′∧e′′. Here e′′

corresponds to the partial effect the countermeasure cancels, and e′ and e′′ are
independent. In risk management, the four types of treatments are introduced
(according to Chapter 6 in [22]): avoidance, limitation/reduction, transference,
and acceptance. If we consider them for the purpose of our discussion, then avoid-
ance corresponds to the case when e′′ is e itself, and acceptance corresponds to
the case when e′ coincides e in terms of the same symbols mentioned above. This
paper does not consider transference, since it may replace e by another effect
and make difficult to estimate the effectiveness of the countermeasure.

Inferences of the properties and corresponding treatments can be related.
However the relation is rather rough, that is, two reductions for the effect of an
attack cannot be compared by the relations.

Lemma 1. Let ep and ec be properties satisfying ec ⇒ ep. If the mitigated ep is
still inferred from the mitigated ec, then the mitigation of ep is weaker than that
of ec. Rigorously, if ep is weakened by avoidance, then so must be ec, and if ep

is weakened by reduction, then ec must be weakened by avoidance or reduction
as well.

The lemma can be proven by a simple observation. Let us split ep and ec

to e′
p ∧ e′′

p and e′
c ∧ e′′

c respectively, where e′′
p and e′′

c are removed by mitigation.
Remember that the inference ec ⇒ ep implies e′

c ∧ e′′
c ⇒ e′

p and e′
c ∧ e′′

c ⇒ e′′
p .

If ep is mitigated by avoidance, that is, ep = e′′
p and e′

p does not actually exist,
then the inference e′

c ⇒ e′
p is contradictory, unless e′

c does not exist. Similarly,
if ep is mitigated by reduction but ec is mitigated by acceptance, then e′′

p still
holds even after mitigation by ec ⇒ e′′

p .
On the basis of the above lemma, we can restrict mitigation of children in

attack trees. However, before stating that, several conditions are assumed for
simplicity:

– Children’s effects around an AND branch are independent. None of them is
inferred by other effects, and the countermeasure for an effect is not overrid-
den by countermeasures for other effects.

– Each child’s effect around a SAND branch is not modified by subsequent
attacks. Hence the entire effect by the children around a SAND branch is
the conjunction of effects by every child.
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Proposition 2. Consider the effect ep of the parent and e1, . . . , ek of the chil-
dren around a branch of an attack tree. Then, the mitigation for ep must be
weaker than or equal to that of all children, if the branch is OR and is still
consistent after the mitigation. In the case of the AND/SAND branch, the
mitigation for ep must be weaker than or equal to the mitigation of at least one
child’s.

Let us first consider that the type of the branch is OR. According to the seman-
tics, it is sufficient to check the relationship between each child and the parent.
The above lemma is applied to an individual child directly, and it is observed
that the mitigation of the parent is weaker than that of each child.

Remember that the consistency means (∧iei) ⇒ ep when the type of the
branch is AND/SAND. We can apply the lemma corresponding to ec as ∧iei,
that is, the mitigation for ep must be weaker than or equal to that of (∧iei). It
indicates that the mitigation for every ei must be avoidance if ep is mitigated
by avoidance. Moreover it indicates that the mitigation for all children must not
be acceptance if ep is mitigated by reduction, that is, at least one ei must be
mitigated by reduction or avoidance. Finally, the proposition is obtained.

Remark that we can observe stronger results for SAND branches. A weak-
ened effect for a child by avoidance or reduction may become an insufficient pre-
condition of the subsequent attacks. Consequently, the attack is not invoked, and
its effect does not occur as well. Therefore, mitigating the leftmost sub-attack
by avoidance/reduction is sufficient to mitigate the entire ∧iei by avoidance.

Considering the case study regarding the vehicular network system. After
analyzing significant threats using attack trees, countermeasures are considered
for primitive attacks of the threats that serve as labels on leaf nodes. The selected
countermeasures are those that will negate the corresponding primitive attacks,
but some of them may be overreactions. Proposition 2 supports the determina-
tion of whether or not the selections are adequate.

Considering the identified threat “Authentication information in Infotain-
ment is stolen via BT/WiFi/IR” (B0) and the attack tree for it (Fig. 5), we note
that the threat is less critical, as its effect, the disclosure of the information, does
not affect the drive control of vehicles immediately. The treatment for the threat
can be reduction; for example updating the information after a fixed period
of time. By referring to Proposition 2, each sub-attack of B0 can be treated by
reduction or avoidance. Similarly, all sub-attacks of B3 must not be mitigated by
acceptance. Therefore we have several options: to accept obtaining device (B3.1)
and eavesdropping (B3.2) but make it difficult to extract authentication infor-
mation (B3.3), or to restrict obtaining device (B3.1) and simultaneously restrict
opportunities to eavesdrop (B3.2) and to extract the information (B3.3).

5 Conclusion

We define a new formal system of attack trees with sequential conjunction, and
the consistency around a branch in terms of effects of attacks. They match the
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Fig. 5. Attack tree with effects and treatment types. The triangle connected to B1
indicates the node is not decomposed here.

interpretation of attack trees as representations of refinement scenarios, and
therefore we can discuss the validity of attack trees formally. These ideas lead
to fine and accountable attack models. Consequently, the construction of attack
trees is improved, and it becomes possible to analyze attack trees rigorously.

As an application, degrees of mitigation for attacks are measured. Although
it is a slightly rough, we show examples and observation for that, with use of a
vehicular network system.

There are several issues left to be considered in the future research:

– Our formulation of attack trees does not cover complicated phenomena includ-
ing the evolution of effects by subsequent attacks, or non-linear relations
among effects and attacks. Developing more expressive attack trees will give
finer models of attacks appearing in the real world. In addition, semantics
should be rigorously related to ones in existing formalizations.

– Research on the derivation of the effects from attacks are required. Additional
information, for example a structure of ToE, may allow determining effects
in systematic way that reduces informal discussion in attack tree processes,
and that validates attack trees entirely at a higher level.

– The evaluation of mitigation can be enhanced. From the practical point of
view, it is beneficial if we can evaluate how effective a mitigation is for a
specific attack. Further research may refine Proposition 2 and we can choose
the most appropriate mitigations for attacks.
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Abstract. In this work, we conduct and discuss a consensus-based risk
analysis for a novel architecture of a driverless and electric prototype
vehicle. While well-established safety standards like ISO 26262 provide
frameworks to systematically assess risks of hazardous operational situ-
ations, the automotive security field has emerged only in the last years.
Today, SAE J3061 provides recommendations and high-level guiding
principles of how to incorporate security into vehicle systems. ISO/SAE
21434 is a novel automotive security standard, which, however, is still
under development. Therefore, we treat the aforementioned architecture
as a single Industrial Automation and Control System (IACS) and pro-
vide an implementation of the IEC 62443 series. We collaboratively iden-
tify threats in a three-round process and define a scoring scheme for auto-
motive risks. As a result, we obtain a tailored bundle of compensating
security mechanisms. Based on our work, we suggest improvements for
future automotive security standards when it comes to the co-engineering
of safety and security.

Keywords: IEC 62443 · Security · Safety · Risk mitigation

1 Introduction

The increasing connectivity and the growing computational power of road vehi-
cles come along with great potential, but likewise lead to security concerns as
demonstrated by prior works [6,15,25]. Beside new security challenges, the field
of safety is also affected by vehicle automation, because a human being cannot
be assumed anymore as a fallback layer. As modern road vehicles are typically
complex cyber-physical systems and need to meet legal requirements, a standard-
ized process for risk identification and mitigation is typically applied. Currently,
the ISO/SAE 21434 [5] is the most promising candidate for an automotive secu-
rity standard. It provides risk assessment methods for Intelligent Transportation
Systems (ITS). After identifying and decomposing threat scenarios into attack
paths, Cybersecurity Assurance Levels (CAL) indicate the estimated security
requirements for given items. Moreover, SAE J3061 [3], published in 2016, pro-
vides general guidelines for the development of secure automotive components.
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326 D. Püllen et al.

It is inspired by the ISO 26262 [1] safety standard and reuses techniques from
existing security models such as EVITA [10] and HEAVENS [2]. Schmittner et al.
[20] demonstrate the security analysis of an automotive communication gateway
by applying the concept phase of SAE J3061. They derive high-level security
requirements, using the Confidentiality, Integrity, and Availability (CIA) triad.
While their work focuses on a single component, our objective is to analyze an
automated vehicle as a whole. For that purpose, we apply the IEC 62443 stan-
dards [4] to a recently announced novel vehicular architecture [24]. We argue,
that IEC 62443 overlaps with the main idea of the unpublished ISO/SAE 21434.
That is, it provides a risk-based security analysis process, takes into account
interfaces to external components (e.g., V2X), identifies and assesses threats,
and eventually uses Security Levels (SL) to describe security requirements. When
it comes to threats, Petit and Shladover [17] identified 12 sources of potential
attacks on automated vehicles and evaluated each one regarding its feasibility,
occurrence probability, consequences and mitigation techniques. Beside the goal
of a systematic security requirement analysis, our research question concerns the
possibility of co-engineering security and safety demands in a vehicular system.
In the following, we aim at sharing our lessons learned and suggest improvements
for future automotive security standards.

2 Overview of a Novel Vehicular Architecture

In 2018, seven German universities and industry partners announced the devel-
opment of four fully automated and driverless vehicles [24]. These vehicles are
supposed to serve as an evaluation platform for new concepts in various fields,
such as automation, modularization, verification, validation, safety, and security.
Unlike contemporary vehicles, that typically consist of dozens of Electronic Con-
trol Units (ECUs), the novel E/E architecture follows a centralized approach,
which is inspired by the human nervous system. That is, four sensor modules
collect and preprocess radar, Lidar, and camera data. They hand them over to
the cerebrum, which is responsible for the trajectory and for behavioral plan-
ning based on the sensor data. The brainstem, in turn, implements and tracks
the trajectory and instructs the spinal cord to eventually move the vehicles. The
latter provides all necessary steering angles and both braking and acceleration
torques to four dynamic modules, which drive the wheels. In case of failures, the
brainstem reflexively enforces an emergency trajectory, by which a safe halt is
usually triggered. All aforementioned modules are connected over BroadR-Reach
in a ring topology, allowing communication even if a switch breakes down. The
dynamic modules are additionally wired over FlexRay, which serves as a supple-
mentary fallback layer. In total, 26 ultrasonic and 2 radar sensors, denoted as
platform sensors, allow for near-field sensing and are directly connected to the
brainstem over CAN. For in-vehicle communication, the Automotive Service-
Oriented software Architecture (ASOA) [11] is deployed, a new modular frame-
work, that enables flexible communication, fast and secure updates of ECUs,
and easy replacement of hardware components.
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Fig. 1. Overview of the proposed vehicular architecture [12]

Beside the prototype vehicles, a new infrastructural concept provides envi-
ronmental information such as traffic updates via V2I communication. A cloud
serves as a collective memory, such that vehicles can incorporate predictive driv-
ing behavior by learning from each other. Drones collect and share additional
traffic information which helps the vehicles to create a realistic environmental
model. This information is fed into trajectory planning algorithms on the cere-
brum. A control room enables the remote control by a human in case automatic
maneuvering is not possible anymore. It is only called into action in exceptional
situations, in order to meet European legal requirements.

In the following, the term vehicular architecture refers to the novel E/E archi-
tecture in combination with its external components as illustrated in Fig. 1.

3 Introduction to IEC 62443

The IEC 62443[4] is a series of standards and technical reports that provide a
structured risk assessment and mitigation process for Industrial and Automation
Control Systems (IACS), alongside with management guidances, policies, and
terminology. An IACS typically describes a complex system consisting of various
computing units, sensors, actuators, temporarily connected devices, and a human
interface, that all collaboratively work on the outcome of a specific product. The
overall objective is to identify threats, assess resulting risks, and come up with
protection techniques.

As shown in Fig. 2, the actual risk assessment process is described in
IEC 62443-3-2 in consecutive steps, denoted as Zone and Conduit Requirements
(ZCR). In the first step, all relevant assets of the System Under Consideration



328 D. Püllen et al.

(SUC) are identified (ZCR 1). A high-level security analysis (ZCR 2) gives indi-
cation about the worst-case unmitigated risk on each asset and whether further
investigation is necessary. Based on the results of this high-level analysis, the
SUC is partitioned into zones and conduits (ZCR 3), whereas a zone contains
assets with the same or similar security requirements. A conduit is a special zone
type, that connects two other zones and therefore, usually describes a network.
In ZCR 4, the tolerable risk rtol,max of each zone is compared with the unmiti-
gated risk ru. If rtol,max is below ru, no further action is required. Otherwise, a
detailed security risk assessment follows in ZCR 5.

The main objective of ZCR 5 is to iteratively reduce the unmitigated security
risk of identified threats (T ) by applying compensating countermeasures. Threats
are associated with seven Foundational Requirements (FR). That is, Identifi-
cation and Authentication Control (IAC), Use Control (UC), System Integrity
(SI), Data Confidentiality (DC), Restricted Data Flow (RDF), Timely Response
to Events (TRE), and Resource Availability (RA). Since the security of a system
refers to the mitigation of threats, an exhaustive list of threats and exploitable
vulnerabilities is crucial (ZCR 5.1–5.2). Both the impact and the likelihood of
each threat (ZCR 5.3–5.4) is determined, in order to compute the unmitigated
security risk ru of each threat (ZCR 5.5). Based on these results, a target secu-
rity level SL-T for each zone is computed. IEC 62443 differentiates between
four levels, SL-1, SL-2, SL-3, and SL-4. While SL-0 is implicitly defined as no
requirements, SL-1 demands for protection against coincidental violations. SL-2
- SL-4 cover intentional violation with an increasing level of skills, resources, and
motivation. Both impact and likelihood are reevaluated (ZCR 5.9) after apply-
ing changes to the SUC, e.g., after introducing a new countermeasure. Ideally,
this leads to a reduction of the residual risk (ZCR 5.10). A reassessment of the

Fig. 2. Simplified workflow of IEC 62443-3-2
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high level risk, however, is not caused. Once the unmitigated risk of all threats
is below the tolerable risk, the SUC is considered secure.

4 Application of IEC 62443

We consider the presented vehicular architecture as our System Under Consid-
eration (SUC). Since it shares most IACS properties like sensors, actuators, and
computing units, we use the IEC 62443 standards for a full security risk analysis.
We demonstrate how to implement the generic guidelines ZCR 1–5 of IEC 62443-
3-2 with the ultimate goal to create a tailored bundle of security means for a
secure and safe operation of the automated vehicles. Our findings may inspire
future automotive security standards. As discussed in Sect. 5, all assessments are
the results of an expert committee.

4.1 High-Level Risk Analysis (ZCR 1 - ZCR 4)

In ZCR 1, our expert team identified a total number of 19 assets in the SUC,
i.e., functional components with a potential impact on security and safety. These
include both in-vehicle assets (e.g., brainstem, radar) and external ones (e.g.,
drones, control room).

In ZCR 2, a high-level security risk analysis was performed for each asset
ai. For this, IEC 62443-3-2 requires to assess the high-level likelihood LHL

ai

and the high-level impact IHL
ai

of a potential attack on ai. Since it does not
state how this is supposed to happen, we apply a multi-criteria decision mak-
ing process. More precisely, we implement a Simple Additive Weighting (SAW)
approach [19], where predefined evaluation criteria are scored and then ranked
according to their importance. As demonstrated in the subsequent paragraphs,
evaluation criteria for both likelihood and impact are represented as vectors
LHL

ai
= (L1 L2 ... Ln)ᵀ and IHL

ai
= (I1 I2 ... Im)ᵀ, respectively. The ranking of

each criterion is done with the normalized weight matrices W L and W I, respec-
tively. We compute the scores LHL

ai
and IHL

ai
by summing up the products of each

score and its weight, i.e., LHL
ai

= LHL
ai

·W L, respectively IHL
ai

= IHL
ai

·W I, where ·
is the dot product. Due to normalization, a score of LHL

ai
=1 indicates the highest

possible likelihood, while IHL
ai

=1 stands for the worst-case impact. The high-level
risk rHL

ai
= (IHL

ai
, LHL

ai
, ) is mapped to a risk class, using the weighted normalized

decision matrix in Table 3. We argue that such a scoring scheme is compliant
with current automotive guidelines, as SAE J3061 recommends additive scoring
for the assessment of impact factors.

Impact: We describe LHL
ai

= (PS FL OL)ᵀ as a vector of three impact criteria,
where PS represents Passenger Safety, FL Financial Loss, and OL Operational
Limitations [10]. Each criterion is independently scored by the experts, who
use a set of exclusive parameters (P) for this task. Based on its severity, each
parameter is mapped on a distinct integer value according to the rules of SAW.
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That is, the least severe parameter is associated with 1, which is then incre-
mented by 1 for subsequent parameters. For instance, we differentiate between
PPS = {fatal, seriously injured, slightly injured,no injuries} for passenger safety.
The parameter p0 = no injuries is associated with 1, p1 = slightly injured with
2, p2 = seriously injured with 3, and p3 = fatal with 4. Following SAW, we
normalize these integer scores with p̃i = min pj∀pj∈P

pi
and then rank them with

predefined weights. In our case, we use probabilistic weights, yielding 0.3 for both
operational limitations and financial loss. As we consider passenger safety the
most valuable criterion for an automotive system, we prioritize it with a weight
of 0.4. We define POL = {massive, high,medium, low,none} to assess operational
limitations of a potential attack. A massive limitation occurs if all traffic comes
to an halt. This, for instance, may happen if the control room is taken over by an
adversary. High limitations lead to traffic jams in a designated area, e.g., when
sending fake traffic information. Medium constraints occur in case a vehicle can
only operate at reduced speed, e.g., when hijacking or deceiving sensors. Finally,
low limitations are the result of hijacking non-critical assets such as the chassis.
Regarding the financial loss, we distinguish between four monetary classes as
shown in Table 1. The so-called Value of a Statistical Life (VSL) [22] served as
a reference value to determine these classes. The VSL indicates the mortality
risk reduction benefit for the U.S. government. In 2016, the U.S. Department of
Transportation indicated a VSL of $9.6 million. Since the VSL is not a universal
constant, we assume VSL = $10M for simplicity. Table 1 shows the normalized
and weighted scores for each impact parameter.

Table 1. Impact criteria with their normalized and weighted scores

Passenger Safety (PS) Fatal Seriously injured Slightly injured None

0.4 0.2 0.134 0.1
Operational Limitation (OL) massive high medium low none

0.3 0.15 0.1 0.085 0.075
Financial Loss (FL) ]$10M, ∞] ]$10K, $10M[ ]$0, $10K] $0

0.3 0.15 0.1 0.075

During our impact assessments, we encountered the problem of transitive
attack relations. Theoretically, every asset ai may be accountable for a worst-
case attack if an adversary manipulates a safety-critical asset aj through ai,
i �= j. As a consequence, all assets would receive the highest impact score, which
eventually could result in over-engineering. Therefore, for the assessment of ai,
we focus solely on its functional description, without considering propagating
side effects. This, however, does not mean that transitive attacks are left out
from the risk analysis, since they are covered by conduits in later steps.

Likelihood: We describe the high-level likelihood LHL
ai

= (IC WC PEI B TP)ᵀ

as a six dimensional Boolean vector. That is, we decide for each asset ai, whether
an Internet Connection (IC) can be established, a Wireless Communication
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Table 2. High-level assessments (ZCR 2) and SUC partitioning (ZCR 3)

Asset Weighted Impact Weighted Likelihood HL Risk Class Zone

PC OL FL IC WC P EI B TP

Control room .4 .3 .3 .286 .238 .19 .143 0 0 ex.high ZF

Brainstem .4 .15 .4 .286 0 .19 0 .095 0 ex.high ZA

Dynamic module .4 .15 .15 .286 0 .19 0 .095 0 ex.high ZE

Radar .2 .1 .15 0 0 0 0 .095 .048 Medium ZB

Sensor module .134 .1 .15 .286 0 .19 .143 .095 0 High ZA

Chassis .1 .075 .15 0 0 0 0 .095 0 Low ZC

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

HMI .1 .1 .1 .286 .238 .19 0 .095 .048 High ZD

(WC) is possible, ai is re-Programmable (P), ai has External Interfaces (EI) such
as ODB2, USB, ai is directly connected to the in-vehicle Bus (B), and whether
ai is produced by a Third Party (TP). For instance, LHL

ai
= (1 0 1 0 1 0)ᵀ

describes a re-programmable asset, which is connected to the in-vehicle bus and
has the ability to establish an Internet connection. The order of the above crite-
ria implicitly shows their ranking, i.e., to what extent they facilitate an attack.
Similar to the high-level impact, we assign each criterion a distinct integer. As an
Internet connection enables a potential attack the most, it receives the largest
value of 6. For each subsequent criterion, we subtract 1 from the value, such
that Third Party is eventually associated with 1. After normalization, we obtain
W L = (0.286 0.238 0.19 0.143 0.095 0.048)ᵀ. Table 2 gives an overview of the
weighted evaluation criteria for both impact and likelihood of a selected number
of assets.

In ZCR 3, we partition the SUC into zones and conduits, using the results
of the high-level security analysis. We obtain nine zones and conduits ZC =
{ZA,ZB , ...,ZF ,CA,CB,CC}. Instead of putting all assets with the same high-
level risk into one zone, we additionally differentiate between safety-critical and
remote assets. For instance, ZA consists of highly safety-critical in-vehicle assets
(brainstem, cerebrum, sensors, router), while the (remote and safety-critical) con-
trol room resides in ZF . In that way, we are able to better address specific safety
and security demands. Although the dynamic modules are highly safety-critical,

Table 3. Weighted normalized risk matrix with acceptance ranges
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they are put into the dedicated zone ZE , because they are additionally connected
between each other over a fallback bus (cf., Fig. 1) and thus, have a significantly
different attack surface. The fallback bus is treated in a dedicated conduit (CC)
as well. CA describes the in-vehicle Ethernet-based communication and CB is the
wireless network that connects external components such as the cloud and the con-
trol room. Table 2 shows the zones to which an asset belongs.

In ZCR 4, a detailed security analysis follows for a zone Zi ∈ ZC, if there
is an asset ai with a high-level risk rHL

ai
> rtol,max

Zi
, where rtol,max denotes the

maximum tolerable risk. Since IEC 62443-3-2 does not prescribe how to deter-
mine rtol,max, we define both a maximum tolerable impact Itol,max and likelihood
Ltol,max. We exclude passenger harm and financial loss, but find low operational
limitations tolerable, resulting in Itol,max = IHL

ai
· W I = 0.1 + 0.085 + 0.075 =

0.26. Similarly, we define the tolerable likelihood. That is, we only consider it
non-critical if an asset is manufactured by a third party and/or is connected to
the vehicle bus, while all other criteria are excluded. These considerations lead
to Ltol,max

ai
= LHL

ai
· W L = (0 0 0 0 1 1)ᵀ · (0 0 0 0 0.095 0.048)ᵀ = 0.143. The

grayed fields of the risk matrix in Table 3 correspond to the tolerable risk. Since
no asset has a tolerable high-level risk, a detailed security analysis is required
for all zones and conduits.

4.2 Detailed Risk Analysis (ZCR 5.1 - ZCR 5.10)

The objective of ZCR 5 is to move the unmitigated risk ruZi
of potential threats

in a zone Zi ∈ ZC below the maximum tolerable zone risk rtol,max
Zi

. This is
achieved by applying compensating security countermeasures, which lower ruZi

and thus, move the achieved security level SL-AZi
closer to the target secu-

rity level SL-TZi
. A security level measures security demands arising from risks,

whereas a risk results from a threat on a given asset in combination with at least
one vulnerability. Thus, a crucial step for a reasonable risk analysis is the thor-
ough determination of a threat and adversary model, taking into account known
vulnerabilities and both the impact and likelihood of the identified threats.

Threat Modeling: A core prerequisite of a risk analysis is an exhaustive list of
threats T , since compensating security techniques may not protect the SUC from
unidentified threats. During threat identification, we face two core problems:
First, it remains impossible to prove completeness for T , even though numerous
identification techniques, such as CIA, STRIDE, and Threat Trees have been pro-
posed [21]. Since threats are identified by the expert committee, we claim to have
diverse views on the SUC and to obtain a reasonable number of threats. Addi-
tionally, we acknowledge the work by Petit and Shladover [17], who identified
potential attack surfaces on road vehicles, that inspired our threat identification.
Second, a collaborative threat identification process requires a common notion
of a threat, when it comes to the granularity level. For instance, t1 = “The
attacker triggers the vehicle brakes.” and t2 = “A network man-in-the-middle
attacker injects forged braking commands.” are both candidates for threats with
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the same outcome. However, t1 is phrased on a purely functional level, while t2
already addresses one potential attack scenario. While the author of t1 may view
the SUC at a coarser granularity level, he potentially misses attack vectors, as
more than one vector can lead to the same outcome. In order to obtain threats
with a comparable granularity level, we apply a three-round iterative threat
identification process, as illustrated in Fig. 3. In a first round, we identify top-
level threats on a purely functional level, having in mind what consequences are
possible. After that, each top-level threat is split up into intermediate threats,
taking into account how they can be realized, i.e., a precise attack vector. Since
an attack vector can be used to realize more than one attack, an intermediate
threat may appear multiple times. For instance, threats t0-2 and t2-2 in Table 4
are identical and are thus treated equally in succeeding steps.

Fig. 3. Three-round iterative threat identification process

In the last round, each intermediate threat is associated with at least one zone
or conduit Zi ∈ ZC and at least one foundational requirement fr ∈ FR, resulting
in T fr

Zi
⊆ T . We formally model T fr

Zi
= {t ∈ T : π1(frzc(t)) = fr ∧ π2(frzc(t)) =

z} with frzc : T → (FR≤7 × ZC≤9) and π the projection operation. In that
way, we identified 63 intermediate threats.

Computation of Zone-Based Security Levels: Based on the identified
threats, we derive a target security level SL-TZi

for each zone Zi ∈ ZC (ZCR
5.6). The security model HEAVENS [2] combines a threat level with the impact
level to derive a security level. In contrast, IEC 62443-3-2 has no prescribed
method to compute a security level. It only recommends to either represent
SL-TZi

as a scalar or as a vector. A scalar value minimizes the effort during
verification, because the total number of possible states is kept low. In turn, a
scalar may lead to over-engineering, since it does not allow a fine-grained require-
ment analysis. For instance, a zone requiring a confidentiality level of SL-4 would
obtain SL-TZi

as an overall security level, although precautions regarding other
security goals may not be necessary. We express the security level of a zone
Zi ∈ ZC as a seven dimensional vector, where each dimension takes into account
the unmitigated risks ruti ∈ T fr

Zi
for a given fr ∈ FR. In other words, we assign

a security level to each foundational requirement and thereby, express to what
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extent it is affected in Zi. Precisely, we determine SLZi
= (SLIAC

Zi
SLUC

Zi
...SLRA

Zi
)ᵀ

where SLfr
Zi

= max(< rut0 , r
u
t1 , ..., r

u
tn >), ruti ∈ T fr

Zi
, fr ∈ FR. As an example, for

the achieved security level of zone ZA, we obtain SL-AZA = (SL-2 SL-3
SL-4 SL-3 SL-2 SL-4 SL-3)ᵀ.

Similar to the high-level analysis, we express the unmitigated risk ruti of a
threat ti as a combination of likelihood (ZCR 5.4) and impact (ZCR 5.3). We
suggest a cascading parameter approach, that evaluates likelihood and impact
depending on further sizes like vulnerabilities and attacker’s capabilities. This
means, any change in one of those parameters immediately propagates to ruti .
Precisely, the likelihood for a successful threat ti is determined by the required
capabilities for its implementation and by exploitable vulnerabilities (ZCR 5.2).
We acknowledge, that the idea of incorporating the attacker’s capabilities into
the threat likelihood has been already proposed in [16]. Similar to the HEAVENS
project[2], we model the attacker’s capabilities AC as three factors, experience

Table 4. Mapping of intermediate threats on zones and foundational requirements

Top Layer Threat No. Intermediate

threat

Zones& conduits Functional requirements Risk class

ZA ZB ... CC IAC SI ... RA

Adversary

prevents

braking

t0-0 Injection of fake

braking

commands

x x x x ex.high

t0-1 Illegal firmware on

dynamic modules

x x Low

t0-2 Manipulation of

brainstem

firmware

x x x high

t0-3 Malicious device

to vehicle bus

x x x x ex.high

t0-4 Impersonation of

control room

x x High

Manip-

ulation

of position

t1-0 Injection of forged

position data

x x x ex.high

t1-1 GPS jamming x x High

t1-2 Illegal firmware on

localization ECU

x x x Medium

Passenger

Imprison-

ment

t2-0 Malicious

firmware to door

control

x x Low

t2-1 DoS on door

control

x x x x ex.high

t2-2 Manipulation of

brainstem

firmware

x x x High

Manipula-

tion of

traffic data

t3-0 Sending fake

traffic data to

cloud

x x x ex.high

t3-1 Map poisoning on

cerebrum

x x Medium

t3-2 Forging traffic

data from drone

x x x High

... ... ... ... ... ... ... ... ... ... ... ...
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E , knowledge K, and resources R, i.e., AC = E × K × R. We score each of them
independently for all threats ti. Afterwards, we assign each identified vulnera-
bility a value from V = {severe,medium,negligible}. A severe vulnerability, for
instance, may be a broken cryptographic protocol or a zero-day exploit, while
a medium one requires user privileges. A negligible vulnerability is mostly the-
oretical, such as quantum attacks. Regarding the impact of ti, we use the same
criteria as we did for the high-level analysis, i.e., by ranking a threat according
Personal Safety, Operational Limitations, and Financial Loss. Eventually, we
receive a tuple for unmitigated risk ruti of every threat ti ∈ T as illustrated in
Table 4, allowing us to compute a target security level for all zones.

4.3 Threat Mitigation and Results

After having computed a security level SL-AZi for each zone Zi ∈ ZC, we iter-
atively identify and apply compensating countermeasures, such that the unmit-
igated risk ruti of threat ti ∈ T fr

Zi
,∀fr ∈ FR shrinks below the tolerable risk

rtol,max
Zi

. For this purpose, we constantly compare ruti ≤ rtol,max
Zi

by reassessing
all parameters, that impact likelihood and impact (ZCR 5.7-5.10). For instance, a
compensating countermeasure for the foundational requirement System Integrity
in zone ZA is data authentication. Assuming the verifiable authenticity of in-
vehicle traffic, the required capabilities to inject fake braking commands without
being recognized (c.f. threat t0-0 in Table 4) rise significantly, since an attacker
would need to circumvent cryptographic protection. This, in turn, makes t0-0
less likely and consequently, rut0-0 decreases. Beforehand, the expert committee
defines a tolerable risk rtol,max

Zi,fr
for each zone Zi ∈ ZC and foundational require-

ment fr ∈ FR. Precisely, they determine the tuple rtol,max
Zi,fr

= (Itol,max
Zi,fr

, Ltol,max
Zi,fr

)
and compare it with all ruti , ti ∈ T fr

Zi
. For instance, the maximum tolerable likeli-

hood of the foundational requirement Use Control for zone ZF (control room) is
set to extremely low, because only individuals with assigned privileges are allowed
to remotely control a vehicle. According to Table 3, this leads to Ltol,max

CF ,UC = 0.191.
As the high-level analysis in Sect. 4.1 has revealed, the malicious operation of
the control room can lead to life-threatening situations. Therefore, we set the
maximum tolerable impact Itol,max

ZF ,UC to extremely low, i.e., Itol,max
ZF ,UC = 0.26. As a

result, we obtain rtol,max
ZF ,UC = (Itol,max

ZF ,UC , Ltol,max
ZF ,UC ) = (0.26, 0.191).

Depending on the security level, IEC 62443-3-3 provides countermeasures for
each foundational requirement. However, we argue, that most of them are not
directly applicable to our SUC, since they have not been designed for automo-
tive challenges. That is, real-time behavior, resource-constrained control units,
and a high reliability. For example, a security level SL-2 of the foundational
requirement Identification and Authentification Control demands for public key
infrastructure certificates. This, however, is hardly applicable to in-vehicle com-
munication, because public key certificates lead to unacceptable overhead, as
they come along with long certification chains and demanding cryptographic
operations. As a consequence, we looked for alternative, more lightweight, and
resource-saving solutions. In particular, the work of El-Rewini et al. [9] inspired
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us, as they provide an extensive survey on automotive security frameworks. As
a result, we obtain a detailed list of security mitigation techniques for each zone,
that protect against the 63 identified threats. They can be summarized as fol-
lows:

Authenticated In-Vehicle Communication: A core prerequisite of safety-critical
in-vehicle conduits and zones (ZA, ZE , CA, CB) is the ability to verify the authen-
ticity of data streams. In this way, the injection of fake commands becomes dif-
ficult. A promising alternative technique are implicit certificates in combination
with distinct physical memory characteristics [18], avoiding potentially long and
resource-consuming certification chains. Related work [9] illustrates additional
solutions for the wide variety of in-vehicle communication protocols.

Integrity of In-Vehicle Control Units: Since both the SUC and contemporary
road vehicles possess an increasingly large number of external interfaces, and the
ability to remotely update control units, adversaries, residing inside the ECUs,
must be prevented. In our case, we propose to treat the brainstem as a trust
anchor, that verifies the integrity of all control units before the vehicle start.
For this purpose, we suggest Remote Attestation (RA), a technique, allowing to
prove the integrity of a device to a third party. Kohnhäuser et al. [13] show how
to use RA in the automotive domain.

Malicious Behavior Detection: During the security analysis, high-risk threats on
safety-critical assets were associated with the foundational requirement Timely
Response to Events (TRE). Specifically, adversaries connecting to the in-vehicle
bus may be able to flood the in-vehicle network (DoS attack) and thus to cause
failures. We find an anomaly-based intrusion detection system [8] for safety-
critical in-vehicle traffic (i.e., conduits CA, CB) a suitable compensating coun-
termeasure. Also, inter-vehicle communication (i.e., zone CC) is prone to DoS
attacks, for which, however, many mitigation frameworks have been presented
[23].

Data Separation: The initial design of the SUC provides a single in-vehicle bus
for all data flows. Consequently, user input and potentially safety-critical data
streams are mixed, which may lead to the delayed transmission of safety-critical
demands. As our risk analysis revealed threats affecting the foundational require-
ment Restricted Data Flow for in-vehicle traffic, the presented vehicular archi-
tecture requires means to separate data flows. Both physical and virtual data
separation achieve this goal. For our SUC, we configure VLAN priority levels for
the Ethernet-based in-vehicle network and use the arbitration logic of the CAN
bus. The FlexRay network inherently realizes a TDMA-based schedule, allowing
to reserve dedicated time slots for critical data.

Access Control: An integral part of the SUC is the control room, that enables
human remote control in case of emergency situations. In order to distinguish
between legitimate and illegitimate remote control, an access control system is
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necessary at the vehicle’s edge. This is highlighted by the risk analysis, that
exposes the importance of user authentication, in particular when it comes to
the communication between the vehicle and its exterior. Since the router is
the only gateway to the external world, access control mechanisms have to be
implemented in the corresponding zone (ZA). This includes a strict deny-by-
default policy and mutual identity checks.

5 Discussion

Our analysis particularly highlights the demand for system integrity and timely
responses, since a significant number of threats are mapped on the corresponding
foundational requirements. Both software and communication integrity are key
factors for a safe driving state. This evidence coincides with related work [17],
that considers the injection of fake messages as one of the severest attacks on
modern vehicles.

Although our analysis yields effective means to protect against the identified
threats, we lack techniques to handle actual security incidents during vehicle
operation. We need means to assess them in real-time and to adopt appropriate
(safety) measures. We plan to address this problem in future work. Regarding
our security requirement analysis, we want to stress the following points:

Quality of Assessments: For our consensus-based risk analysis, we presented a
scoring scheme, using Simple Additive Weighting (SAW) as a decision support
system. In order to obtain reasonable and consistent assessments, and to ensure
a broad insight into the SUC, we engaged an expert committee, consisting of
eight computer scientists and mathematicians from the Securing Engineering
Lab1 of the Technische Univeristät Darmstadt . As a first step, the experts have
been thoroughly introduced to the novel vehicular architecture in a Q&A ses-
sion. Afterwards, we established the presented set of evaluation criteria based
on related work and empirical values. As both the threat identification process
and all assessments have been jointly accomplished by the expert committee,
we argue to properly address subjectivity and vagueness. However, we admit,
that a higher committee heterogeneity in terms of educational background may
yield even better results. Regarding the proposed scoring scheme, we currently
assign a fixed probabilistic weight to each evaluation criterion. We consider the
Fuzzy Analytic Hierarchy Process (FAHP) [7] an effective alternative to deter-
mine preference weight, but leave this for future work.

Safety and Security Co-Engineering: We pursued the question of what changes
are necessary for a safety-aware security risk analysis in the automotive domain.
As safety and security demands may contradict, the possibility of prioritization is
crucial. We find the mapping of risks onto zones and foundational requirements
a promising technique, because it allows fine-grained solutions for large-scale
systems. The partition of the SUC into zones and conduits should take safety
criteria into consideration. In addition, we suggest the following adaptions:
1 http://www.seceng.de.

http://www.seceng.de
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– So far, the seven foundational requirements are purely security-related. We
suggest extending them with safety requirements such as reliability, redun-
dancy, and real-time behavior. By doing so, the unmitigated risk of a threat
or of a hazardous situation would take both safety and security dimensions
into account. The presented vector-driven approach allows prioritization, by
pointing out which foundational requirement is affected most by a set of
threats. Appropriate countermeasures can be deduced in that way.

– The countermeasures listed in IEC 62443-3-3 need to be adjusted for the auto-
motive domain. Instead of user-oriented, potentially computationally heavy
systems (e.g., PKI, multi-factor authentication, ...), lightweight and resource-
saving techniques (e.g., implicit certification, hardware-based security, ...)
are worthwhile. There has been extensive work on automotive security with
numerous frameworks, covering many automotive challenges [8,9,14,23], that
should be included in a future standard.

– A common set of evaluation criteria and a consistent scoring scheme for auto-
motive systems is desirable, in order to make analysis results comparable. We
presented a scheme, that incorporates both security and safety criteria for
risk assessment.

5.1 Comparison to ISO/SAE DIS 21434

The high-level risk analysis and the subsequent partition into zones and con-
duits allow for efficient identification of relevant assets. Besides, the analysis
process becomes more scalable, since uncritical assets are excluded from further
steps. The use of foundational requirements as a reference point enables the clear
establishment of mitigation techniques.

While the detailed risk analysis of IEC 62443-3-2 begins with the identifi-
cation of threats, the novel ISO/SAE DIS 21434 starts from potential damage
scenarios and traces them back to attack paths. More precisely, the risk assess-
ment methods are comprised of seven steps (I-VII). Initially, damage scenarios
are identified, which may occur through compromised assets (I). A damage sce-
nario is triggered by a set of adverse actions, a so-called threat scenario, which
are enumerated in (II). The impact of each damage scenario is assessed according
to four core categories of consequences, Safety, Financial, Operational, and Pri-
vacy (III). Subsequently, each threat scenario is decomposed into attack paths in
a top-down or bottom-up approach (IV). The feasibility of each path is assessed
according to a pre-defined scale (V), resulting in a risk value (VI) for each threat
scenario, which also incorporates the impact of the damage scenario. Finally, risk
reduction methods shall be realized (VII). In case the risk for a threat scenario
has to be reduced, a Cybersecurity Assurance Level (CAL) reveals requirements
for the affected item.

At first glance, the risk analysis process of ISO/SAE DIS 21434 and
IEC 62443 have little in common. On closer inspection, however, both stan-
dards do share similar concepts. The CAL is similar to the SL-T value, which
is only determined if the risk is too large. Instead of our iterative threat identi-
fication process and conduits, attack paths cover propagating effects of adverse
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actions. While the idea of decomposing threat scenarios into attack paths is the
most promising feature of ISO/SAE 21434, our work reveals requirements that
are not yet met by ISO/SAE 21434. Unlike IEC 62443, the novel automotive
standard prescribes assessment criteria and parameters. However, it insists on
neither underlying cybersecurity requirements nor mitigation techniques, con-
trary to IEC 62443. For the sake of a common minimum security perception,
suggestions of countermeasures for specific CALs would be helpful, in par-
ticular, because road vehicles are generally subjected to the same safety and
legal requirements. Also, consistent scoring schemes and a dedicated process to
identify relevant critical assets of a potentially complex architecture would be
desirable.

6 Conclusion

In this work, we presented a consensus-based implementation of the generic
IEC 62443 cybersecurity standard for a novel vehicular architecture. In par-
ticular, we identified risk evaluation criteria and developed an additive scoring
scheme to assess automotive risks. Furthermore, we introduced a hierarchical
threat model for a collaborative threat identification process. We used a cas-
cading parameter approach to express risks as zone-based vectors, yielding fine-
grained security levels, that express security requirements. We conclude that
especially data and software integrity, the separation of safety-critical commands,
and the ability to detect anomalies are crucial for automated vehicles. Based on
our lessons learned, we find as essential for a future standard the systematic
partition of a potentially complex vehicular architecture into relevant assets, the
computation of security levels with regard to cybersecurity reference goals, the
treatment of transitive adverse actions, and the suggestion of mitigation tech-
niques. We also make suggestions on how to incorporate safety requirements into
a future standard. In particular, a safety-aware automotive security standard
should use a redefined set of foundational requirements, including safety objec-
tives such as reliability, redundancy, and real-time behavior. Although IEC 62443
has been originally designed for IACS, we promote its applicability to the auto-
motive domain in combination with the adaptions suggested in this work.
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Abstract. Cybersecurity threats have become a reality for safety criti-
cal systems such as automobiles, railways and avionics witnessing cyber-
security incidents and research reports from white hackers. Threat anal-
ysis plays an important role to identify potential threats in early stages
of the system development and it is a common understanding that the
threat analysis for safety critical systems need to assess an effect caused
by threats against safety. In this paper, we propose a threat analysis
framework on safety concepts required by ISO 26262 in an architec-
ture description language SCDL (Safety Concept Description Language)
specifically designed for safety concepts modeling in ISO 26262 and
demonstrate the effectiveness of our framework on a case study. Our
research result shows the potential usage of SCDL for threat analysis
and effect analysis between functional safety and cybersecurity.

Keywords: SCDL · Safety architecture · ISO 26262 · Security ·
Threat analysis

1 Introduction

Cybersecurity threats have become a reality for safety critical systems such
as automobiles, railways and avionics, witnessing cybersecurity incidents and
research reports from white hackers. Although threat analysis has already been
practiced in various industrial domains in the past, it is now a common under-
standing that the threat analysis for safety critical systems needs to assess an
effect caused by threats against safety. This makes us doubt whether the threat
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analysis methods used in the IT (Information Technology) are readily applicable
for safety critical systems. An engineering discipline that considers the interac-
tion between safety and security is called safety and security co-engineering [1],
and a part of it is an attempt to combine safety analysis and threat analy-
sis [2]. However, we have not found any practical and effective threat analysis
methods which fully utilize the work-products produced from functional safety
activities in ISO 26262 [3] yet. Particularly we are deeply concerned with how
to carry out threat analysis with the safety concept in ISO 26262, since it is the
first work product to be produced at the concept phase, an earliest phase in ISO
26262. The safety concept is a specification of the functional safety requirements,
with associated information, their allocation to elements within the architecture,
and their interaction necessary to achieve the safety goals. Unfortunately how to
produce a safety concept in a certain formalism/modeling language is not explic-
itly stated in ISO 26262. In order to address this issue, one of the authors of
this paper designed an architecture description language (ADL) called “Safety
Concept Description Language (SCDL)” [4], which has been widely used for
developing safety architectures in automotive industry in Japan. In this paper
we propose a threat analysis framework for SCDL which fully utilizes a safety
concept modelled in SCDL. This framework enables to show the followings:

+ Safety goal violations due to security attacks
+ Protection by safety mechanisms against security attacks

We show how safety goal violation can be caused by cybersecurity threats
and how safety architecture alone can prevent safety goals against them. These
are of great concerns for safety engineers and an effective analysis on these at
early stages help develop safe and secure automotive architecture. It might not
be certain why the latter is crucial at the first sight, so we quote a famous
hacking case study on Jeep by C. Miller and C. Valasek in [5]. In their case
study, in order to take over control of the car, they place an Electronic Control
Unit (ECU) under the diagnostic mode and inject control messages instead of
that ECU. However the safety mechanism prevents putting an ECU under the
diagnostic mode while the car is at high speed. In fact, the same phenomenon
happened when Tencent attacked Tesla Model S in [6]. The safety aspect of these
case studies are largely ignored from the security experts, but this is the very
issue of which safety engineers have a great concern.

The paper is organized as follows: The next section explains the SCDL lan-
guage and threat analysis. The case study is explained in the Sect. 3 and related
work is presented in the Sect. 4. Finally we conclude the paper in the Sect. 5.

2 Background

In this section, all necessary background knowledge for this paper is explained.
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2.1 SCDL

The main purpose of the SCDL (Safety Concept Description Language) is to
provide a full support for analysis and design of safety architectures that include
safety mechanisms in vehicle development in order to develop the safety concept
more easily than required by ISO 26262. The language specification of SCDL
has been developed by SCN-SG (Safety Concept Notation Study Group) [7] led
by Yamashita, one of the authors of this paper and the language specification is
open to the public and currently three tools are available. In this section we will
explain the syntax of SCDL for readers to understand the case study modelled
in SCDL.

Table 1. Definition of symbol for SCDL.

Symbol Description

A requirement is expressed in a rectangle and with its

assigned “ASIL” presented in a small rectangle located

at the upper right corner of the rectangle. In this

rectangle, the type of requirement is expressed at the

top (FSR for Functional Safety Requirements, NSFR

for Non-Functional Safety Requirements and FR for

Functional Requirements), the Requirement ID of the

requirement at the middle left, and the name of the

requirement at the bottom

An Item and element is expressed in a rectangle and

assigned “ASIL” is presented in a small rectangle

located at the upper right corner of the rectangle

Balloon type notation can be used for the requirement

group using an ellipsoid and connecting lines.

Requirements group includes “SM (Safety Mechanism)”

and “MF (Main Functionality)”. The latter is now

called “IF (Intended Functionality)”

Requirement rectangle can be located within an

element rectangle

“Interaction” between two requirements is expressed

with a one direction arrow

“System boundary interaction” is expressed with a

block type arrow which stands for some interaction

outside of the system

Pairing between requirement groups is illustrated with

a bidirectional arrow

“Interface” can be used to define interfaces which

appears on the crossing point of inter-requirement

interaction line and element boundary line, and is

expressed with a square

The SCDL provides symbols for requirements, requirement group, item and
elements, and relations between them such as interactions, system boundary
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interactions and requirements group pairing. The SCDL allows an allocation
of a requirement to an element, which is a faithful interpretation of functional
safety standards in general. For instance, ISO 26262 states that The functional
safety requirements shall be allocated to the elements of the system architectural
design. An item and an element are specific terms in ISO 26262 which roughly
mean system and system component respectively. The graphical representation
of the symbols and their definitions are shown in Table 1.

2.2 Safety Activities in ISO 26262

According to a Functional Safety Concept (FSC) in ISO 26262, which specifies
safety requirements and elements to achieve safety goals, and safety architecture
is the substantial work product derived from safety activities in the concept
phase. Figure 1 depicts safety activities related to produce a FSC. The deliverable
of “3-7.4.2 Derivation of functional safety requirements” is in fact the safety
architecture, which will be specified in SCDL. For more detailed explanation,
please refer to ISO 26262-3:2018 [3].

Fig. 1. Activities for deriving FSC.

2.3 Criteria on Threat Analysis

There are several threat analysis methods proposed by several authors. We con-
sider the following as substantial criteria for threat analysis. That is, a threat
analysis method should provide means to analyze or model at least some of these
criteria.

1. Where does an attack come from
2. What should be protected from an attack
3. What boundary should be protected from an attack
4. How does an attack reach the target
5. What kind of attacks are possible
6. How may attacks are necessary
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The first criterion “Where does an attack come from” is to analyze the
“Attack Surface”, which is a potential entry point for an attack where an unau-
thorized user (i.e., attacker) can intrude. The second criterion “What should
be protected from an attack” is to analyze the “Asset” which is a part of the
system to be targeted by an attacker. We classify assets into two kinds, one is
“Information Asset” for information/data and “Functional Assets” for function-
ality of the system. The third criterion “What boundary should be protected
from an attack” is to analyze the “Trust Boundary”, which specifies the area of
protection from attacks in the entire system architecture. The fourth criterion
“How does an attack reach the target” is to analyze the “Attack Path” which
begins with an attack surface up until reaching the assets to be protected. This is
sometimes called “multi-stage attack”. The fifth criterion “What types of attack
are possible” is an identification method to analyze potential attacks on attack
surfaces and assets. The final criterion “How many attacks are necessary” is a
security version of multiple faults. Sometimes just a single attack on an attack
surface or an asset is not be enough to achieve an attacker’s goal and multiple
attacks on multiple attack surfaces and/or assets are necessary in some cases.
This is different from the attack path already explained, since an attack path is
a continuation of a single attack, which can be divided into stages (e.g., some
system component).

Our interpretation of those criteria in SCDL is as follows:

1. Attack surface
– Interactions and system boundary interactions

2. Assets
– Requirements for functional assets and Interactions and system boundary

interactions for information assets
3. Trust boundary

– Elements
4. Attack path

– Any paths consisting of requirements and interactions.
5. Attack identification

– Any attack identification methods such as STRIDE.
6. Multiple attacks

– A combination of attacks on attack surfaces and/or assets which causes
a safety goal violation.

SCDL does not provide any model elements for representation of any data
or information or any holder for them. So the reasonable interpretation of infor-
mation asset is interaction which represents passing data/information between
elements or sending them from outside of the system.

2.4 Threat Analysis Process

The threat analysis process we use in this paper is shown in Fig. 2.
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Fig. 2. The process of threat analysis to safety architecture.

It starts with 1) Input data, which includes a FSC specified in SCDL and
relevant system information. We adopt the process that threat analysis process
follows safety activities in ISO 26262. It then goes on to 2) Threat analysis.

2–1) Identify the trust boundary in a FSC in the given SCDL model.
2–2) Identify functional assets (requirements) and information assets (interac-

tion and system boundary interactions between elements).
2–3) Identify attack surfaces (interactions between elements or boundary inter-

actions)
2–4) Identify threats against assets and attack surfaces using some guide-word

such as STRIDE.
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2–5) Analyze identified threats in detail using methods, e.g., attack trees [8].

The process depicts further activities such as risk assessment of identified
attacks and derivation of security requirements. But this paper only deals with
1) up to 2–4). After completing 2–4), we will assess whether identified attack(s)
would violate safety goals.

3 Case Study and Analysis Results

In this section, we will explain our case study and show our results on threat
analysis based on our proposed framework explained in the previous section.

3.1 Case Study

Figure 3 shows our case study on the Parking Assist System, in which the safety
architecture in FSC modelled in SCDL is depicted. An intended safety goal for
this case study is “Does not generate unintended control values against user
intention” and ASIL level “D” is allocated to that safety goal, which is not
depicted in the model. This system automatically parks a vehicle based on “Map
data”, “Positioning Information”, and “Sensor Input” following “User Opera-
tion” which let the “Smartphone” (EL-1) generate “GO/NOGO” command. As
safety measures, two safety mechanisms are implemented on the vehicle. One is
“Command Checking” (FSR-2-1), which covers malfunctions of the “Command
Generation” (FR-1) and “Command Reception” (FSR-2). The other is “Arbitra-
tion” (FSR-3-1) and “Monitor” (FSR-3-2), which cover malfunction of “Control
Value Generation” (FSR-3). The safety goal is a requirement that the vehicle
(EL-2) must achieve, therefore there is no safety mechanism on the smartphone.

Fig. 3. Parking assist system.
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3.2 Threat Analysis Framework

The first step for threat analysis is to identify the trust boundary. In this case
study, the whole vehicle (EL-2) is identified as the trust boundary, which secures
the safety measures to achieve the safety goal. This is depicted as a dashed yellow
line in Fig. 4.

Fig. 4. Trust boundary. (Color figure online)

We then identify assets, which are classified as functional assets (Table 2)
and as information assets (Table 3) respectively.

Table 2. Functional assets.

ID Requirement Classification

FR-1 Command Generation FSR

FSR-2 Command Reception FSR

FSR-2-1 Command Checking FSR

FSR-3 Control Value Generation FSR

FSR-3-1 Arbitration FSR

FSR-3-2 Monitor FSR

FR-4 Actuation FR

FR-5 Location Data Acquisition FR

FR-6 Judgement FR

FR-7 Environment Recognition FR

FR-8 Map Data Acquisition FR
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Table 3. Information asset.

Information asset Position

User Operation External

GO/NOGO External

Map Data External

Map Data, from FR-8 –

Pre Command –

Command 1 –

Control Value 1, 2, 3 –

Location Data –

Positioning Information External

Sensor Input External

GO/NOGO, from FR-6 –

Environment Recognition Data –

Actuation External

Potential attack surfaces will be identified taking all interactions into account
summarized in Table 4. An effective threat analysis for interactions in principle
would require technical information such as communication protocol/media (e.g.,
Bluetooth, CAN) on them, but this kind of detailed technical information is basi-
cally not available at the concept level. We regard system boundary interactions
and interactions in Fig. 4 as attack surfaces and carry out threat analysis on
them.

Table 4. Identified attack surfaces.

Name Kind

GO/NOGO Interaction

Map Data System boundary interaction

Positioning Information System boundary interaction

Sensor input System boundary interaction

STRIDE is a collection of capital letters extracted from typical threats, i.e.,
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service
and Elevation of Privilege and adopted in SDL (Secure Development Lifecycle)
which is used to identify potential threats on trust boundary [19]. We will adopt
STRIDE for identifying threats on system boundary interactions and assets.

The following Table 5 shows the analysis result for interactions:
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Table 5. Application of STRIDE.

Interaction Type of Interaction S T R I D E

User operation System boundary interaction � � � �
GO/NOGO Interaction � � � �
Map data System boundary interaction � � � �
Positioning Information System boundary interaction � � � �
Sensor Input System boundary interaction � � � �

This table reads like “Spoof the map data”, “Tamper the map data”, “Eaves-
drop the map data”, “Disrupt the transmission of the map data” The Table 6
shows analysis results applying STRIDE against assets:

For instance, Tampering “Command checking” is to change its functionality
to something else. Denial of service to “Command checking” is to disrupt its
function, e.g., to delay its function. E for “Command checking” is to override
this function.

The aim of attack is to damage the vehicle by “Parking a vehicle at an
inappropriate place”. For the sake of brevity, we only take one example analysis
and explain it step by step. Let’s take a case of “Spoofing User Operation”. The
result of this attack is an unintended issue of the “GO” command which will
be accepted by the Command Reception” (FSR-2). However, whether the place
is not appropriate for parking can be judged by location information obtained
by “Map Data” and “Location Data” which will be used by the “Judgement”
(FR-6) requirement. This would prevent this attack.

Now we will consider multiple attacks which include the above attack and
“Tampering Map Data”. We assume here that the map data is tampered with
to include some obstacles, which would damages the car. In this case, self loca-
tion information is not helpful to prevent this attack and “GO” command is
eventually issued from “Judgement” (FR-6), which will be received by “Con-
trol Value Generation” (FSR-3). FSR-3 also receives “Environment Recognition
Data” from “Environment Recognition” (FR-7) which is originally from “Sensor
Input”. This “Environment Recognition” detects the surrounding environment
of the vehicle and might find some obstacles. This would prevent this multiple
attacks.

Table 6. Application of STRIDE against assets.

(Functional) Asset S T R I D E

Command Checking � � �
Control value generation � � �
Arbitration � � �
Monitor � � �
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Finally we will consider multiple attacks which include the above attack plus
“Spoofing Sensor Input”. The typical example of spoofing sensor input is adver-
sarial attacks, which is widely studied nowadays in relation to machine learning
techniques for image recognition. In this case, unintended “Control Value 1” is
generated by “Control Value Generation” (FSR-3) and this violates the safety
goal “Does not generate unintended control values against user intention”. Unfor-
tunately the safety mechanism “FSR-3-1” and “FSR-3-2” would not help for
FSR-3, since the same spoofed data are processed in both requirements.

This analysis shows how we can find potential combination of attacks and how
those attacks would violate safety goals. In order to do this, we assess possible
effects on requirements by tracing through interactions from attack surfaces until
we could reach any possible safety goal violation.

3.3 Discussion

As was demonstrated by the case study in the previous section, we have
shown that the threat analysis framework we propose for the safety architec-
ture required by ISO 26262 is effective to identify potential threats to the safety
architecture and to check the safety goal violation.

We successfully mapped six attack analysis criteria to our framework and
how multiple attacks on multiple attack surfaces would result in the safety goal
violation. We could also show that some attacks would be prevented by safety
architecture to some extent.

Please notice that this analysis framework is limited to safety architecture
modeled in SCDL so that non safety threats will be overlooked by this framework.

4 Related Work

We will compare our work with security extensions of Architecture Description
Language (ADL) and some other graphical modeling notations similar to SCDL.
There exist a number of ADLs, but we only focus on ADL related to automo-
tive systems, that is, EAST-ADL [9], AADL (Architecture Analysis and Design
Language) [10] and a security extension of SysML [16].

EAST-ADL was developed under the project ITEA EAST-EEA and further
extended to integrate AUTOSAR [18]. The biggest difference between SCDL
and EAST-ADL is that in SCDL we can allocate requirements to the element,
ASIL is allocated to requirements and items/elements, and requirements can be
grouped under some particular groups such as safety mechanism.

The security extension of EAST-ADL called SAM (Security Abstraction
Model) [15] proposes a new meta-model for security properties for EAST-ADL.
SAM does not provide specific threat analysis technique for safety architecture
model in EAST-ADL and the work does not state any relation between safety
and security interactions such as safety goal violation by potential attacks. We
believe that our framework could be applied to EAST-ADL and could do similar
analysis on FSC in EAST-ADL.
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AADL is developed by SAE and CMU/SEI and has been extended to include
error models as the Error Mode Annex [11] and security models as the Security
Annex [12]. Security architectures modeled in AADL is based on MILS [13] and
was applied to avionics. Later AADL is enhanced to target IoT (Internet of
Things). AADL Security Annex is entirely based on a different idea of security
and there is no work on AADL, which focuses on safety and security interactions.

SysML stems from UML (Unified Modeling Language) to support the systems
engineering development and its profile is defined by UML metamodel. Security
extensions of UML were proposed by several researchers such as misuse cases and
UMLsec [14]. One notable security extension of SysML is cp/TARA (common
platform for Threat Analysis and Risk Assessment) [17] by one of the authors
of this paper. The cp/TARA extends block definition diagrams and require-
ments diagrams to include security features (e.g., assets and attack surfaces,
various kinds of security requirements compliant to J3061 [20]) to support threat
analysis on architectural elements and refinement of security requirements. The
cp/TARA is in fact the most similar approach to our framework, but it only pro-
vides threat analysis to system architecture and does not deal with any safety
and security interactions.

The above comparison shows that our threat analysis framework helps ana-
lyze not only potential threats against the safety architecture but also safety
goal violation to assess any effects of security against safety, which are not dealt
with in related work.

5 Conclusion

In this paper, we presented a threat analysis framework which fully utilizes the
safety concept modelled in SCDL, an architecture description language specifi-
cally designed for modeling safety concepts specified in ISO 26262. We demon-
strated the security analysis method provided by the framework on a case study
and showed that it is effective in threat analysis as well as assessment of violation
of safety by security threats. This result also showed that SCDL can be used for
threat analysis at the concept phase in ISO 26262.

This paper is our preliminary results on our efforts of investigating interac-
tions between functional safety and cybersecurity for automotive systems and
we think the followings are our future work:

Feedback loop to safety: We have adopted a process in which the safety
activities in the concept phase in ISO 26262 come first, then moves on to
threat analysis. We need to establish how a feedback cycle could be achieved
going backward to safety activities and a method to assess impact on them.

Process Integration: There would be several ways to integrate functional
safety process with cybersecurity process (e.g., [21]). We would like to inves-
tigate whether other types of integration could be possible and see how our
framework can be applied.
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Level of abstraction in ISO 26262: SCDL is primarily designed for the con-
cept phase, but currently it is extended to deal with other phases such as the
system level. The concept phase which is the most abstract in terms of model
specification does not deal with physical interfaces/communication media.
However the next phase is the system level, which in fact deals with physical
interfaces/communication media (e.g., CAN, Bluetooth). We are planning to
extend our framework for the system level and see how the abstract threat
model obtained in the concept phase could be enhances to accommodate the
level of abstraction at the system level.

Acknowledgements. We would like to thank all the members of the SCDL Security
SWG, particularly Mr. Toshio Muramastu and Fumiaki Kohno for the discussions on
the issues addressed in this paper, and Gaio Technology for organizing the SWG and
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Abstract. Cyber-physical systems (CPS) are threatened by cyber
attacks just as any computing system. Even worse, due to them being
embedded into the physical world, consequences can be catastrophic. The
widespread use of unsafe languages and limited operating system protec-
tions makes code-reuse attacks particularly dangerous to smaller CPS.
Existing effective countermeasures are either not applicable because
resources are limited, or they introduce an unacceptable overhead. In
this work, we propose a fine-grained load-time software diversity app-
roach that is enabled by compile-time preparations. Its linear-time load-
ing algorithm makes it feasible for resource-constrained CPS. We demon-
strate our approach by fully diversifying an application including the
real-time operating system FreeRTOS on an ARM real-time microcon-
troller. Our performance evaluation using the TACLe benchmark suite
shows that the worst-case execution time overhead is acceptable.

Keywords: Security · Real-time · FreeRTOS · CPS · WCET

1 Introduction

Code-reuse attacks can be mounted on real-time cyber-physical systems just as
on general-purpose computing systems. However, these systems are mostly not
as well protected as larger systems. The problem is that existing countermea-
sures are not applicable to resource-constrained real-time systems or do not offer
comprehensive protection. We solve this problem by proposing a load-time arti-
ficial software diversity approach that does not require sophisticated hardware
such as a memory mapping unit (MMU), special instructions or hardware vir-
tualization. At the same time, requirements of real-time systems are met: Only
safe diversifying transformations are used to keep safety guarantees intact, and
the timing overhead for loading and executing the program is predictable and
boundable. The level of security against code-reuse is very high, because almost
the entire instruction memory is covered and the possible number of variants is
very large.

c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 357–371, 2020.
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The rise of code-reuse attacks started when data execution prevention was
introduced as a very effective measure against code-injection attacks [19] as the
primary way to exploit memory errors. Since code-reuse was first proposed [17],
various countermeasures and in turn more sophisticated attacks were introduced
[3,5,12], even for embedded systems [4,22]. The common idea of code-reuse
attacks is to inject addresses of existing functions or code chunks (so-called
gadgets) into the data locations used for the control flow (i.e. return addresses
on the stack) rather than injecting the code itself.

In general-purpose systems, user processes work under the protection of the
operating system. A major difficulty of an attack is the interaction with the
operating system via system calls in order to make an effect onto the system
state. This is less complex in systems with reduced or no operating system,
where the interaction with the environment is more direct. Hence, once the
control flow is diverted, the malicious code may reach its goal faster. An example
is the diversion of the control flow to an inflate function of an airbag, which
is not complex, but may have horrific consequences.

Artificial software diversity is a general term for approaches that have been
proposed as countermeasures against code-reuse attacks. Their common idea is
that hiding information from the attacker makes the success of attacks unlikely.
The attacker has to guess information that the attack relies on - such as instruc-
tion addresses. Diversity is agnostic to the kind of attack - in contrast to
many approaches using control flow integrity (CFI), which protect specifically
against certain types of attacks. This makes diversity a universal countermea-
sure against any code-reuse, even against yet unknown attack types. At compile-
time, all information is available and creating variants with equivalent behavior
is straight-forward. However, a complex deployment and updating infrastructure
is necessary. Load-time diversity is easier to distribute and the most secure: Exe-
cuting a different variant each time a program is started prevents the attacker
to learn from failed attempts.

Larger operating systems, such as Windows and Linux, use address space
layout randomization (ASLR), where start addresses of certain code sections are
randomized at load-time. This works in a large virtual 64-bit address space, but
is not secure enough for smaller systems [18]. We use more fine-grained diversity,
while protecting the whole binary. However, existing load-time approaches [7,21]
for fine-grained diversity use disassemblers to perform transformations in the
code, which has a large overhead in the loading process and introduces potential
software errors, as disassembly is not sound [23]. Also, it is not feasible to ship
the infrastructure that is required to disassemble and recompile the program
with every device. We address these issues with the following contributions:

– We propose an efficient loading algorithm for safe, fine-grained diversifi-
cation. Necessary information is collected in a compile-time phase, allowing
for a fast linear-time loading of the code.

– We show how diversification works when using the ARM instruction set
and its limited address lengths without having to recompile at load-time.
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– We demonstrate the applicability of the approach on a real-time system using
FreeRTOS[1], making it the first fully diversified operating system
with fine-grained diversity, suitable for small embedded devices.

In addition to the FreeRTOS case study we evaluate the load time, the impact
of diversity on the worst-case execution time (WCET) and the program size.
Our evaluation uses TACLe benchmark [9], a benchmark suite commonly used
in literature on WCET analysis. Me measured WCET over all variants of a
benchmark to be only 0.87% higher the average than that of the initial variant.

The rest of this work is organized as follows: Sect. 2 briefly introduces the
concept of artificial diversity. Section 3 introduces our approach in general, which
is continued in Sect. 4 with its application onto the real-time operating system
FreeRTOS on an ARM microcontroller. Section 5 offers experimental results. In
Sect. 6 we discuss related work, and a conclusion is drawn in Sect. 7.

2 Background

Artificial software diversity is best described as an automatic altering of code in
order to hide implementation details. The variations that are possible to perform
automatically correspond to the choices a compiler makes between semantically
equivalent options. Examples are the selection of equivalent instructions or the
order of instructions with independent data flow. We use reordering and reloca-
tion of independent code fragments as the only diversifying transformations at
load-time. A fragment is defined as a set of instructions located continuously in
adjacent memory locations. Independent means that there is no indirect control
flow between two adjacent fragments. The transformations allow to choose freely
which instruction marks a fragment end, as long as there is no implicit control
flow to the subsequent instruction. We define function level diversity a frag-
mentation granularity where all return instructions define a fragment end. This
kind of diversity is also known as function reordering. In block level diversity,
unconditional jumps and return instructions are fragment ends.

By not using insertions of instructions at random locations, the timing impact
and memory requirements can be made boundable and predictable, which is
crucial for real-time systems. It also means that the set of fragments F and
their sizes are fixed at compile time and equal in all variants, and therefore each
instruction i is mapped to a single fragment.

3 Compiler-Guided Load-Time Diversification

3.1 Threat Model

We assume a powerful threat model: The devices are assumed to employ data
execution prevention, e.g. by using a memory protection unit (MPU). A memory
mapping unit (MMU), and therefore memory paging, virtualization and process
isolation, is not required. Attackers have unlimited resources to develop exploits
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prior to an attack. They have access to a reference hardware that enables them
to gain full access to the program code, including fragment boundaries and sizes.
However, they cannot access the entire code of the system under attack. Using
these assumptions, we can expect an exploit for an existing vulnerability to be
found eventually.

compile-time phase load-time phase
program
source
code

compiler

assembly
analyzer

loader
code

modified
program
assembly

divers.
data

compiler/
linker

self-
diversifying

binary

randomize
fragment
order

O(n) load
and update
addresses

switch to
run-time

Fig. 1. Approach overview.

3.2 Approach Overview

Our approach is based on the idea that the binary can be equipped with enough
information about the diversification so that the loader can operate efficiently
and safely without disassembling the program. The required information is simi-
lar to the more coarse-grained relocation information that is used for the variable
positioning of objects by linkers. Figure 1 illustrates the approach. It is split in
two phases: In the compile-time phase, the program is converted to an assembler
file suitable for diversification, where addresses are still symbolic. Fragment posi-
tions and references to code segments such as branch targets are extracted here,
which could otherwise only be gathered by a disassembling process at load-time.
Together with this information, the program is packed as a payload into the
loader application, making it a self-diversifying binary. The loader itself oper-
ates in phase two: It first determines a random fragment order and then loads
the program fragments to the designated positions while updating all relevant
addresses. After the program is loaded, the loader deletes all information that
would reveal the order and launches the diversified program.

3.3 Diversification Data

As described in Sect. 2, we are limiting the diversifying transformations to relo-
cation and reordering of code fragments. Fragments are split at unconditional
jumps for block-level diversity or only return instructions for function-level diver-
sity. Any granularity can be used in this phase. We collect the set of frag-
ment starting addresses fAdr:{A} and sizes fSiz:{N}, where A is the set of
the addresses in the instruction memory, as part of the diversification data.
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To keep the code’s functionality equal to the initial fragment order, the con-
trol flow and data accesses have to adjusted to the new fragment order. This
re-writing of addresses requires knowledge of the locations of all instructions
whose behavior might change (i.e. instructions that target code addresses that
might change).

Fig. 2. Invalid branch addresses.

Figure 2 illustrates, which addre-
sses are invalidated by fragment
reordering: Each data reference or
branch that points to a location out-
side its own fragment with a relative
address, and all absolute references
pointing to sections that may be shuf-
fled. These references are depicted
using red arrows (dashed for data
accesses, solid for branches). Invali-
dated addresses have to be updated
in the loading process. Irrelevant for
diversification are relative branches
within the fragment (green, dotted
arrow).

The respective instruction addre-
sses are collected in two tables
rel:{A → F} and abs:{A →
F}, each table mapping instruction
addresses to target fragments.

It is also possible that multiple
code sections with different access
rights are shuffled (or not) separately. In this case, also section information with
s.address : A and s.shuffle : boolean are collected.

Using the symbolic address information available at assembler level, this app-
roach can support all branches and data accesses that may be used in the origi-
nal program, with one exception: The intentional use of non-symbolic absolute
addresses in code sections.

3.4 Compile-Time Phase

The compile-time phase consists of the following fully automated steps:

1. Compile the program to a low-level representation, where instructions are
fixed, but addresses are symbolic. We use the LLVM compiler to create a
single assembly file without directives of variable size.

2. Re-write parts of the program not compatible with relocation, such as short
addresses. In ARM, it applies to PC-relative load instructions (Sect. 4.1).

3. Analyze the program to extract diversification data (see Sect. 3.3).
4. Compile the program and extract the section binaries.
5. Compile the loader program and pack the diversification data and program

binary as payload into the loader.
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Algorithm 1.Diversified Program Loading.
Require: fAdr, fSiz // fragment locations and sizes
Require: rel, abs // relative and absolute address tables
Require: sInfo // section infos
Ensure: Program diversified and loaded
1: order, order’ ← [1..|F |]
2: seed ← obtainRandomSeed()
3: for all s ∈ sInfo | s.shuffle do
4: order’,seed ←randomFragmentOrder(seed, order’, s.address)
5: end for
6: fAdr’ ← updateFragLocations(fAdr, order, order’)
7: curRelEntry, curAbsEntry ← 0
8: for all f ∈ order do
9: for all i ∈ [0 .. (fSiz[f]-1)] do

10: srcAdr ← fAdr[f]+i
11: instr ← src[srcAdr]
12: if srcAdr = rel[curRelEntry].adr then
13: instr ← updateRelAddress(instr, srcAdr, rel.dst, fAdr, fAdr’)
14: curRelEntry += 1
15: end if
16: if srcAdr = abs[curAbsEntry].adr then
17: instr ← updateAbsAddress(instr, abs.dst, fAdr, fAdr’)
18: curAbsEntry += 1
19: end if
20: dst[fAdr’[f]+i] = instr
21: end for
22: end for

3.5 Load-Time Phase

The loader code starts up after each reset. Algorithm 1 describes the loading
process in detail: First, a random seed is taken from variable sources such as
analogous inputs. With this, the order of fragments to be shuffled is randomized
using a linear shuffling algorithm [8]. The new order is then used to determine
the new fragment locations in the target program. The loading algorithm then
iterates linearly though all instructions and copies them to the predetermined
locations. If an instruction is encountered that needs updating, its address is
in the current position (curRelEntry and curAbsEntry, respectively) of the
address tables rel and abs. They are sorted, so they can be processed linearly as
well. Absolute addresses can be replaced directly with the new address. A relative
address a of an instruction in fragment fx targeting a position in fragment fy
can be updated as follows:

a′ ← a + (fAdr(fx) − fAdr′(fx)) − (fAdr(fy) − fAdr′(fy))

After copying the code to the target position, order’ and fAdr’ are deleted,
so that potential attackers do not get access to all memory layout information
using a single information leak. After that, the execution can be switched to
the actual program to be executed. The user program then has to set the access
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rights to the parts of the memory so that the entire loader area is not executable,
the diversified program is not writable and its RAM sections are not executable.

3.6 Complexity and Security

The algorithms in the loader are all linear: The complexity of the randomization
is O(|F |), and that of the loading is O(n), with n as the number of instructions.

Due to space reasons, and because we are using a well-studied type of diver-
sity, we refrain from quantifying the security increase of the diversification app-
roach in this work in detail, and refer to the discussion in [7]. Fine-grained
diversification results in a specific address possibly being located in any address
of the target address space. Therefore the randomness is limited to the size of
that target space. The probability of a successful attack performed with sim-
ple guesses depends largely on the vulnerability, the attack and the contents of
the rest of the code. If multiple addresses need to be guessed correctly by the
attacker in a fairly large target address space, the probability of success becomes
prohibitively low. Hence [7] argue for general-purpose systems that a small num-
ber of fragments provides a security level high enough. If it suffices to guess few
addresses for simpler attacks in a small address space, brute-force might still be
feasible for an attacker, or attacks on a large number of devices become worth-
while. Therefore, the systems we target require a much higher fragmentation.

With our approach, we are able to diversify (fine-grained) almost all exe-
cutable code, with the exception of starting points such as interrupt tables. In
the example we discuss in Sect. 4, this is a small code section of eight instructions.
These are vulnerable to direct memory leaks (read access to instruction memory)
and of course control-flow attacks, if they are useful gadgets themselves. Note
that the loader code itself is not loaded, and can therefore be protected from
being leveraged in attacks using appropriate memory protection settings.

A reasonable part of the defense should be a fail-safe mode that prohibits
multiple attempts. Another aspect to this is the fact that a simple program
crash and restart as a reaction to a successful defense against an attack is not
feasible in an embedded real-time system anyway - the program should respond
to aborts with proper protections for critical functionality.

4 FreeRTOS Diversification on ARM

To demonstrate the applicability of our approach to real-time systems, we imple-
mented it using the real-time operating system FreeRTOS [1]. This is freely
available with ports to many microcontrollers. Our reference implementation
uses a LAUNCHPAD-XL2 TMS57012 microcontroller (MCU). That features an ARM
Cortex-R4f core, specifically designed for safety-critical real-time systems. The
ARM Cortex-R4f allows to protect twelve memory regions of variable sizes using
an MPU (memory protection unit), so that data execution prevention can be
applied effectively.
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Fig. 3. Converting literal pools to fragment pools.

4.1 Diversity with the ARM Instruction Set

The first step of diversifying a program is addressing the specifics of the instruc-
tion set. The ARM Cortex-R4f uses the 32-bit ARM instuction set, which can be
diversified with only minor changes. It features the following uses of addresses
in the instruction memory (at assembler level):

– Conditional branches and jump instructions always use relative addressing,
with an address distance of ± 32MB. This suffices for many smaller real-
time systems. If there exists a risk of creating higher address distances during
shuffling, long jumps have to be used. We use the rel table to collect all
branches with possibly varying distance, i.e. targeting other fragments.

– Absolute addresses can be saved as 32 bit words, e.g., the instruction .word
LABEL1 saves the address LABEL1. If LABEL1 is targeting a code section to be
shuffled, it is stored in the abs table.

– Move instructions with addresses as half-word immediates are stored to the
abs table as pairs, to be updated together (e.g. movw :upper16:LABEL).

– Load instructions with pc-relative addressing (LDR, ADR, VLDR) are the most
complex. The largest possible relative distance is 1024 bytes, which is too
short for diversification when located in another fragment. ARM compilers
create literal pools, were constant data is stored to be used by close-by instruc-
tions, possibly being used multiple times (The pseudo instruction LTORG
helps creating these pools in hand-written assembler). These pools have to
be repeated so that they are located at most 1024 bytes from the instruction.
With our diversification, however, the pool might be part of another frag-
ment and therefore be relocated much further. To solve that, we rewrite the
program, so that there are no literal pools based on absolute distance from
the instruction, but as part of the fragment the data is accessed in. Figure 3
illustrates the idea: Each constant data entry of literal pool is copied to the
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fragments using it, creating fragment pools that serve the same purpose. Frag-
ment sizes have to be limited accordingly.

Programs limited to the use of addresses using labels can be diversified safely
using these addressing modes. Using hard-coded immediate operands pointing
to a section to be shuffled, however, is not supported.

Fig. 4. Memory layout of FreeRTOS on TMS57012.

4.2 FreeRTOS on ARM Cortex-R4

After establishing how to diversify and update each instruction, we can move to
illustrating what to diversify where, using the algorithms presented in Sect. 3.5.
Figure 4 shows the memory layout. FreeRTOS uses a kernel as well as a user
part of the operating system. The kernel part contains the OS parts during
operation, such as the scheduler and heap management. The user part contains
the OS initialization code (before real user tasks are executed) and the user tasks.
Kernel instructions can only be accessed in ARM access modes other than the
user mode, which is secured by the MPU. This difference in access modes has to
be preserved, but we also want to shuffle the kernel section as well in case the
attacker manages to attack kernel parts or switch to a privileged mode. So the
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sections to be shuffled separately are .text and .kernelTEXT. There is a third
code section (.intvecs), which contains the interrupt table, located at address
0x0. In that section, the instructions are fixed and can not be shuffled. However,
they have to be updated during loading. All remaining sections have fixed target
addresses and contain no instructions to be updated.

The Cortex R4 allows switching the execution from the initial flash mem-
ory to RAM, which we use for the loading process. The loader is located in
the flash, starting from address zero (see Fig. 4a). It is packed with the diver-
sification data and program sections as payload, which is why they are located
successively in the flash. The loader then copies the code sections to their tar-
get locations in RAM (starting at 0x08000000), while shuffling and updating
addresses, if necessary. The other sections are copied as well. See Fig. 4a for the
result. After loading, the execution is switched to RAM, which also switches
the start addresses of both memories. All sections are linked towards their tar-
get locations after the switch, to avoid unnecessary data address updates in the
code. Also, all sections are located such that there are no conflicts in their target
RAM location. The loader in the flash, including its interrupt table, are now out
of the way and only the target program is executable. During its initialization
it has to configure the MPU to set the appropriate access permissions (Fig. 4c).

Note that the flash can still be used as a read-only memory in this experimen-
tal setup. The memory sacrifice for diversification is large nevertheless. However,
the controller also allows flashing from RAM execution, which would allow a sec-
ond loader stage to diversify code in the flash.

5 Evaluation

We evaluated our approach using the TACLe benchmarks [9] kernel suite, a
benchmark commonly used to evaluate tools and analyses for WCET estimation.
These 25 programs contain many aspects of program execution. They are single-
path benchmarks, which allows us to generate WCET estimates without having
to handle the parameter space. For real-time systems, the WCET is the relevant
performance measure (in contrast to general-purpose systems, where the average
performance is more important). The benchmarks were extended by standard
library operations such as div and memcpy to be compiled for the controller.
The benchmark size ranges from 2.8kB to 40.82kB, and in basic block level, the
number of fragments ranges from 95 to 447 (21–75 in function level). To fully
evaluate the capability of our approach to diversify an entire real-time system
- including an operating system and its access levels as described in Sect. 4 -
we added our program pacemaker. It is an actual real-time system scale case
study using five FreeRTOS tasks. This is our largest benchmark (78692kB, 2464
fragments in basic block level, 958 in the .kernelTEXT section of the code).

We performed our measurements on a TMS57012, as described in Sect. 4.
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5.1 Load Time

Fig. 5. Load times.

Figure 5 depicts the load times for
all benchmarks over their respective
code size. It demonstrates that the
loading process has linear complex-
ity, but also depends on data size,
fragmentation and the number of
addresses to be updated. The upper
straight line in the chart shows the
average load time of approx. 0.2
ms/kB in function-level diversity and
3.1 ms/kB in block-level diversity.
Our pacemaker benchmark requires
26.6 ms to load.

5.2 Run Time (WCET)

We performed run-time measurements with at least 100 executions (different
program variants) of the TACLe benchmark programs to evaluate the runtime
impact of the diversity on the WCET. Although the system does not have a cache
and its branch prediction is address-independent, the execution time depends on
the location of the code. Our measurements are summarized in Fig. 6. Each mark
represents the average of WCET measurements for all executions of a benchmark
relative to the non-diversified program, and the error bars show the distribution
of these measurements. It shows that the average performance only worsens
slightly (0.01% for function-level, 0.03% for block-level). Relevant to us, however,
is an overall WCET for all executions of a benchmark. The average overall
WCET is 0.86% higher than the original runtime for function-level diversity, and
0.87% for block-level diversity. The highest increase was observed for bitcount
at block level, with 3.2%.

Note that, due to the single-path property of the TACLe benchmarks, the exe-
cution path does not depend on external inputs, therefore the measured WCET
is actually an upper bound for the specific variant it was measured with. We
refrained from using static WCET analysis in this work, because a detailed
enough timing model of the controller is not publicly available. Our diversifica-
tion approach does not change the CFG or instructions of the code, therefore
the timing variations that can be observed are caused by address-dependent
speculative hardware elements, likely small-scale bulk loading of instructions
in the prefetch unit of the processor. In earlier work, we have proposed static
WCET cache analyses [11] and branch prediction analyses [10]. These are able
to obtain a WCET estimate as an upper bound for all variants of the code, and
they are applicable when using the diversifying transformations proposed in this
work. They support a range of cache and branch prediction architectures, and
demonstrate that the timing impact is boundable and can be estimated in the
magnitude of state-of-the-art static analyses.
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Fig. 6. Distribution of WCET measurements in TACLEBench variants.

5.3 Memory Overhead

The flash memory overhead (binary size) for the diversification of the programs
is depicted in Fig. 7. The sizes for instructions and data as well as the additional
diversification data are shown, compared to the total size of the original pro-
gram. The impact of the literal pool transformation is the amount by which the
program sections exceed the 100% line (negligible). The diversification data size
in average is 7.4% of the initial binary size in average for function-level diver-
sity, and 32% for block-level diversity. The loader itself takes up 6.4 kB of flash
memory.

5.4 Applicability and Security

At last, there is to mention that all the mentioned programs could be diversified
without modifications to the existing instructions. There was not a single use
of absolute non-symbolic addressing that is not supported by our approach. We
did not use any functions from pre-compiled libraries, hence avoiding program
parts whose source code was not available.

We created three different exploits for typical vulnerabilities as part of the
pacemaker case study, which could be fend off by our diversity countermea-
sure. The attacks are using buffer overflows, and demonstrate the execution of
unwanted functionality, privilege escalation and keeping the controller in spin-
lock after attack. The question remains how likely it is for the attacker to guess
the gadget locations correctly and reach their goal before the system crashes
and restarts in a safe mode. Our exploits required four to six gadgets to reach
their goal, which is less than is usually required to prepare for a system call in a
general-purpose system. Our approach can support any granularity of fragments,
at the performance trade-off presented in our measurement results.
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Fig. 7. Sizes relative to original program size for function-level (l)/block-level (r).

6 Related Work

A large number of countermeasures against code-reuse attacks have been pro-
posed. We concentrate on approaches relevant to real-time systems that can
cover the entire instruction memory. Many are randomization-based (Larsen
et al. [14] presents an excellent overview). Among these, we concentrate on load-
time approaches.

Control-flow integrity (CFI) [2,20] is the idea of protecting the control-flow
using instrumentation code to check if it is diverted. Full CFI protection suffers
from large performance overhead, and partial instrumentation possibly discloses
vulnerabilities. Specialized protections such as canaries or shadow stacks only
protect certain vulnerabilities and cannot cope with unknown attacks.

Address space layout randomization (ASLR) [16] is section level diversity,
which is widely deployed in larger systems. It has been demonstrated that ASLR
can be easily brute-forced in systems with 32-bit address space (or lower). A sys-
tem without an MMU has a much smaller address space, even at 32-bit address
width. Also, a single information leak reveals all addresses of the code.

Binary Stirring [21] and Xifer [7] are load-time block-level diversification
approaches designed for general-purpose computers with regular operating sys-
tems. They use a disassembler before diversification, which is not feasible to
be deployed to smaller real-time systems, and may violate safety guarantees
as disassembling is generally unsound [23]. Disassembling also causes long load
times and requires a disassembler and compiler to be shipped. Splitting blocks
at random locations creates timing behavior that cannot be statically bounded.
Moreover, Xifer is used with the ARM instruction set, but handles its specialties
(e.g. address lengths) by recompiling. This will result in different instructions
and their timings over variants, impairing the execution time predictability.
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AVRAND [15] uses page-level diversity for an AVR-based microcontroller.
The solution relies on rewriting the whole code so that it only uses absolute
addressing, which would not be possible on ARM. Also it is not clear if the
solution could diversify a whole operating system including privilege modes.

EPOXY [6] is a lightweight operating system that aims to protect real-time
systems by adding instrumentation to vulnerable instructions in privileged mode,
also features a simplified safe stack and compiler-based diversity. MINION [13]
uses memory view switching, aiming to reduce the code parts of the process
accessible by the attacker. Both approaches are limited by the granularity of
access rules and the precision of the included CFG and data flow analyses, leaving
parts of the program unprotected. The randomization of EPOXY is compiler
based, while we propose a more secure load-time approach.

7 Conclusion

We propose a safe and efficient load-time diversification algorithm that uses
detailed addressing information obtained at compile-time. To demonstrate its
potential, we used it to create the first fully diversified embedded operating sys-
tem, featuring interrupts, task scheduling, privileged modes and memory access
restrictions. Our experimental results show that the performance overhead is
low and the load times are very small while scaling well. The system is fully
automated, and, once integrated into the tool chain, does not require any input
from the developer. The price to pay for the considerable security gain, however,
is increased memory usage. As the number of fragments can be reduced variably,
our approach allows finding a suitable security trade-off.

In future work we are planning to extend the diversity algorithm to larger
memory sections, spreading the code sections into unused areas and diversify
data sections.
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Abstract. The advent of the Internet of Things (IoT) and Cyber-
Physical Systems (CPS) enabled a new class of connected, smart, and
interactive devices. With their continuous connectivity and their access
to valuable information in both the digital and physical world, they are
highly attractive targets for security attackers. Integrating them into
the industry and our daily used devices adds new attack surfaces. These
potential threats call for special care of security vulnerabilities during the
design of IoT devices and CPS. Due to their resource-constrained nature,
designing secure IoT devices and CPS poses a complex task, considering
the selectable hardware components and task implementation alterna-
tives. Researchers proposed a range of automatic design tools to support
system designers in their task of finding the optimal hardware selection
and task implementations. Said tools offer a limited way of modeling
attack scenarios for a system under design. The framework proposed in
this paper aims at closing this gap, offering system designers a way to
consider security attacks and security risks during the early phase of
system design. It offers designers the possibility to model security con-
straints from the view of potential attackers, assessing the probability
of successful security attacks and the resulting security risk, alike. We
demonstrate the framework’s feasibility and performance by revisiting
an industry partner’s potential system design of a future IoT device.

Keywords: Cyber security · Embedded system design · Secure IoT
systems · Secure CPS · Secure embedded consumer devices

1 Introduction

The increasing utilization of the Internet of Things (IoT) in the commercial
market and cyber-physical systems (CPS) in the industry, opened a new attack
surface. In the last decades, numerous cybersecurity exploits have been doc-
umented [1,11]. The ongoing integration of such systems demands the con-
sideration of cybersecurity exploits throughout the whole system design pro-
cess. Introducing security measures causes additional performance delay and
power consumption, contradicting the systems’ requirements for fast response
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times and high energy efficiency [19]. Considering the hardware and task imple-
mentation alternatives, finding the optimal solution satisfying performance and
security poses a multi-objective optimization problem. Designers rely on auto-
matic design space exploration (DSE) tools are used. There exist both clas-
sical DSE tools focusing on performance and power consumption [8,13], and
DSE frameworks offering the consideration of security constraints in a limited
way [6,7,10,16,18,20].

The framework presented in this paper introduces a new approach to intro-
ducing security constraints in early IoT/CPS design, based on both attack graphs
and risk trees. Among a set of possible hardware components and task imple-
mentation alternatives, the framework finds the optimal selection of hardware
components and task placements considering the system’s power consumption,
performance, security attack mitigation capability, and security risk exposure.
In this paper, we make the following contributions: (i) To the best of our knowl-
edge, the framework presented here is the first to allow the consideration of
security constraints modeled as Bayesian attack graphs (BAGs) and risk trees
during early IoT/CPS design. (ii) We integrate both approaches and show their
advantages and disadvantages. (iii) We show the framework’s feasibility based
on a secure consumer device use case and the scalability of our approach.

The paper is structured as follows: Sect. 2 discusses related projects in DSE,
security attack and risk modeling; Sect. 3 describes the security modeling app-
roach, the framework’s design and implementation; Sect. 4 shows the impact
of both security modeling approaches on the secure consumer device use-case;
Sect. 5 gives a conclusion and discusses future work.

2 Related Work

Network administrators commonly use attack graphs when modeling attack sce-
narios on networks. They model attacks as consecutive steps, represented as
nodes within the graph. Modeling them as BAGs adds information about the
dependency of the distinct steps and the probability of their successful execution
[3,12]. Attack tree analysis (ATA) and fault tree analysis (FTA), generally used
in safety analysis, use a similar modeling approach. Both scientists and engineers
commonly use ATA and FTA [2]. RISKEE describes risk propagation within a
system, and assesses said risk based on a tree representation [9].

A range of DSE tools considering functional safety or security constraints, in
addition to the classical optimization goals, e.g., performance, power consump-
tion, and others, have been presented in recent years [6,7,14,16–18,20]. A range
of these tools focus on the abstract representation of security constraints in the
design space, such as restricting the mapping of security vulnerable tasks to pro-
cessor types with security extensions [16], integration of security functions into
system design [20], or securing control loops [10]. In [5], security constraints and
mitigation capabilities are introduced based on distinct security levels. Other
works consider distinct security problems, e.g., integration of intrusion detection
tasks [6], consideration of network security [7], or optimization of communication
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protocols regarding message authentication [18]. These works cannot directly
integrate the attacker’s perspective on the system into the DSE. Hence, they
do not reflect the effect of security mechanism integration on distinct attack
scenarios.

Contrasting, the framework presented in this paper allows the direct repre-
sentation of security constraints in the form of BAGs and risk trees, allowing the
representation of the overall system’s attack vulnerability and monetary security
risk. Depending on the used modeling approach, the designer directly sees the
effect of the system partitioning and task allocation on both security risk and
security attack vulnerability. The framework allows the seamless interchange
between the risk tree and the BAG representation for describing the security
constraints posed on the IoT device/CPS under design. Considering the secu-
rity performance and power overhead of the distinct solutions allows a detailed
assessment of the costs and benefits of particular system designs, including their
security attack mitigation capabilities.

3 Proposed Methodology

The framework allows the designer to model the system’s functionality, available
architecture components, and security attack scenarios using four perspectives,
as shown in Fig. 1. The work presented in [4] describes a preliminary approach
to introducing security attack vulnerability into DSE. In this paper, we present
a more elaborate approach, allowing the designers to describe the dependencies
of the distinct security assets using rule sets. Furthermore, this paper introduces
the usage of risk trees in addition to the BAG based approach. This usage of risk
trees allows the framework to perform more detailed modeling of the impacts
caused by successfully performed security attacks, shown in Sect. 4. However,
the usage of risk trees induces additional computation time, also described in
Sect. 4. The following paragraphs shortly describe the models behind the distinct
perspectives serving as an input to the framework.

System Architecture and Task Representation
A task graph describes the system’s functionality with its nodes representing
the tasks and the edges modeling the task’s dependencies (logical channels).
Each task performs operations (OP ) on a set of data entities coming with a set
of security requirements (SR). High-level hardware components represent the
system architecture, including communication buses that connect these compo-
nents. Each hardware component has security mechanisms (SM) and mitigation
capabilities. Each SM comes with a distinct performance overhead and power
consumption. For each possible implementation of a task on a hardware com-
ponent, the designers estimate the implementation’s worst-case execution time
(WCET).
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Fig. 1. Framework overview. Inputs consist of: tasks (T) operating (OP) on data enti-
ties (D) with security requirements (SR); Hardware components (HWC) connected
via communication buses; Attacks modeled as BAGs or risk trees. Outputs consist of:
HWC selection and T allocation; security vulnerability (P(AG)) and security risk.

Security Constraint Representation
The sets for OP , SR, SM , security operations (SecOp), and attack types (AT )
are defined by the designer. The designer also defines a set of rules stating
the relations between: OP , SR and SecOp; SR and AT ; SecOp and SM . The
rules are described by input sets (in), connected with boolean operators, and a
resulting output set (out), e.g. (ina∨inb)∧inc �→ outx. Given the tasks and their
SecOp, the framework calculates the set of secure communications (secCom).
A secCom is spanned between two tasks (a source (tsrc) and a destination task
(tdst)) performing the same communication securing operations (secOpComm ∈
SecOp) on a particular data entity.

Security Attack View: The framework allows the designer to model cyberse-
curity threats as BAGs or risk trees. In both methods, each attack (excluding
goals) aims at a certain task and comes with a distinct attack type taken from
AT . Based on the defined ruleset, each attack type aims at a specific security
requirement (defined in SR) of the data handled by the attacked task. Within
the BAG, each node represents a distinct attack step, with its leafs describing
attack goals. The edges define paths an attacker must traverse to reach an attack
goal. Each attack has a distinct success probability provided using a conditional
probability table. The attack goals’ success probabilities are defined by their
marginals in the joint distribution table, calculated by the Bayesian chain rule.
Each goal has a maximum allowed success probability defined by the designer.
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Risk based Attack Trees: The risk-based method uses RISKEE [9], which is
a methodology for risk assessment based on attack trees with the enhancement
of also modeling the consequences (impacts) of an attack, and accounting for
multiple attacks over time (in the form of attack frequencies) instead of just
simulating single events. The key feature of RISKEE is the usage of probability
distributions for the estimation of uncertain values (which are inherent in risk
assessment), providing a benefit compared to classical single-point estimates,
which neglect uncertainties. The mean risk value, which is one of the results
returned by RISKEE, is used as a metric for each defined attack goal. Attack
goals come with a maximum allowed mean risks defined by the designer. By inte-
grating RISKEE into the framework, we are the first to allow the consideration
of risk-based security constraints during the automatic DSE for IoT/CPS.

Security Attack Mitigation: Additionally to the SM , each hardware compo-
nent defines to what extend said mechanisms are capable of mitigating attacks.
This attack mitigation (m ∈ R : m ∈ [0, 1]) states the component’s defen-
sive capabilities. Assessing the attack mitigation is based on the judgment of
the attacker’s expertise and available time for breaking said defensive capabili-
ties. Designers can deduce this mitigation capability from security assessments
such as Common Criteria (CC)1, from historical data recording known secu-
rity incidents, or by expert judgments if no other information is available. The
estimated mitigation factor reduces the attack probabilities (BAG) or vulnera-
bilities (RISKEE) λ, λm ∈ R of all attacks on tasks allocated on this particular
hardware component, giving the mitigated probability λm (λm = λ ∗ (1 − m)).

Secure Task Allocation and Partitioning: Based on the system’s architec-
ture, functionality, and the given attack scenarios, the framework finds a system
partitioning and task allocations which meet the defined security constraints
and optimizes either for performance or power consumption. Figure 1 depicts
the BAG and RISKEE based approach and the influence of the partitioning and
task allocation on the attack success probability and risk value. Hence, the task
allocation must comply with a set of restrictions. (I) All tasks directly commu-
nicating with each other must be allocated on the same component or different
components connected via a communication bus. (II) Each task must map to
a hardware component capable of executing its SecOp, according to the rules
defining the mapping of SecOp to SM . (III) Any task allocation and platform
partitioning must fulfill the security attack constraints (in both the BAG- or
RISKEE-based security attack modeling approach), meaning that for all attack
goals, the defined thresholds on attack success probability or mean risk value
must lie within the defined bounds.

Performance and Power Consumption Calculation: The execution times
of the individual tasks depend on their component allocations, as each possible
implementation of a task on a given component comes with a distinct WCET.
Hence, the overall system performance depends on the selected components and
the task allocations. The system power consumption consists of the component’s
1 https://www.commoncriteriaportal.org/.

https://www.commoncriteriaportal.org/
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static power dissipation and their dynamic power consumption, induced by the
task implemented on them. Additionally, each component comes with a distinct
security performance and power overhead for each SM . For each secComm, the
framework adds the performance and power overhead of the SM used by the
secOpComm of tsrc and tdst to the tasks’ overall execution times and the com-
ponent’s power consumption, alike. For all tasks performing SecOp not included
in any secComm, the framework considers the performance and power consump-
tion overheads as well. The secComm must be considered separately, as a task
can be both tsrc and tdst in different secComm. Without this consideration, the
number of SM executions would not be integrated into the security overhead
calculation correctly.

Optimization of Security Calculation: The implementation of the frame-
work is based on the open-source DeSyDe framework2. The framework spends
its main computational effort calculating the attack probabilities (ap)/risks for
each partitioning and task allocation, as for every new allocation or component
selection, the BAG/RISKEE must be recalculated based on the altering attack
mitigation. The framework orders the components in descending order according
to their mitigation capabilities. In each calculation of the ap/risks, the frame-
work checks if any of the said ap/risks do not fulfill the predefined limits. Upon
reaching this break condition, the framework renders all further allocations on
components with lesser mitigation capabilities to be insecure. Both the RISKEE
and BAG based methods use the same graph structure. Hence, it is feasible to
make a comparison between both methods. Opposed to BAGs, in which attack
nodes can have multiple parents, the current design of RISKEE only consid-
ers single path attack scenarios. Hence, to guarantee a similar structure of the
attack scenarios, the framework implements a graph-unwrapping method, turn-
ing a BAG into a set of RISKEE trees representing said BAG.

4 Experiments and Results

Using the framework, an use case based on a secure ranging system targeted for
the consumer market was revisited. Table 1 describes the security rules defined
by the designer to model the security aspects of the use case. The set of OP
defines reading (r), writing (w) and storing (s) of data. The set of SecOp defines

Table 1. Security rules defined to model security aspects of the use case.

SecOp derived from OP and SR AT attacking SR SecOp using SM

OP, SR �→ SecOp AT �→ SR SecOp �→ SM

(r ∨ w) ∧ conf �→ soenc atinf �→ conf soenc ∨ soauth �→ smcrypt

(r ∨ w) ∧ auth �→ soauth atspoof �→ auth (soenc ∨ soauth) ∧ internal �→ smte

s ∧ (auth ∨ conf ∨ int) �→ sosst attamp �→ int sosst �→ smtss

2 https://github.com/forsyde/DeSyDe.

https://github.com/forsyde/DeSyDe
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Table 2. Hardware components with security options. Mitigation factor (MF), perfor-
mance (Perf) given in µs, and power consumption (PWC) in mW.

HWC Security feature description MF Perf PWC

smcrypt smtss smte smcrypt smtss smte

AP HW crypto; TEE 0.8 50 / 5 60 / 5

SW crypto-lib sc sec., TEE 0.7 60 / 5 50 / 5

SW crypto-lib sc sec. 0.5 40 / / 50 / /

SW crypto functional 0.3 30 / / 30 / /

SE HW crypto, sec store, (EAL 6+) 0.99 500 50 15 60 20 10

HW crypto, sec store, (EAL 5+) 0.95 500 50 15 60 20 10

HW crypto, sec store, (EAL 4+) 0.9 500 50 15 60 20 10

UR HW crypto, TZ, HW firewall 0.8 80 / 15 50 / 10

HW crypto, TZ 0.7 80 / 5 45 / 5

HW crypto, 2 separate MCUs 0.85 80 / 20 50 / 10

SW crypto-lib sc sec., TZ 0.5 160 / 5 90 / 5

SW crypto functional 0.3 60 / / 30 / /

encryption (soenc), authentication (soauth) and secure storage (sosst). The set of
SR defines confidentiality (conf), authenticity (auth) and integrity (int). The
set of security mechanisms (SM) defines cryptographic functionalities (smcrypt),
task encapsulation (smte) and tamper safe storage (smtss). The restriction of
internal holds if both tsrc and tdst of secComm are placed on the same hardware
component.

The system consists of a ranging node and a ranging anchor. The node
authenticates to the anchor using a shared secret (master key) and setting up
a secure session (session key). Within this session, node and anchor perform
a two way ranging secured by a continually updated ranging key. The node
determines its distance to the anchor in a secure way, without comprising its
distance to potentially spying devices, or receiving faked ranging messages from
attackers. The functionality consists of two phases, the authentication and the
ranging phase, which is described by a task graph comprising 46 nodes. The
authentication phase uses an external radio (e.g., Bluetooth Low Energy), the
ranging phase uses ultra-wideband. Table 2 lists the security-relevant options for
the hardware components available for both the anchor and the node device,
giving their estimated performance (Perf) and power consumption (PWC) for
their distinct SM . The devices consist of an application processor (AP), a secure
element (SE), and a UWB Radio (UR). The security options comprise hardware
supported cryptography (HW crypto), side-channel (sc) secured software cryp-
tography library (SW crypto-lib sc sec.), software-based but not tested cryptog-
raphy (SW crypto functional), Trusted Execution Environment (TEE) and Trust
Zone (TZ), secure storage (sec. store), and hardware firewall (HW firewall). Only
the SE offers secure storage.
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Table 3. WCETs of security relevant tasks given in µs.

Device Task name SR AP SE UR

Key Create challenge c,a 100 150 –

Lock Check challenge c,a 100 170 120

Key & Lock Derive session key c,a,i 100 110

Key & Lock Derive ranging key c,a – 190 140

Lock Start session c,a 80 170 120

Key & Lock Create secure nonce c,a – 120 200

Key & Lock Create ranging message c,a 120 – –

Lock Calculate distance c,a – 350 230

The attacks on the overall system comprise the disclosure of the key material,
faking the secure authentication, which builds on a challenge request-response
exchange, hijacking the ranging session, and compromising the exchanged rang-
ing frames. Security analysts modeled these attacks using 56 nodes, both for the
BAG and the RISK tree. Table 3 lists all security-relevant tasks as identified by
modeling the attack scenarios, including their SR and WCETs on the hardware
components on which system designers considered their implementations. Con-
fidentiality (c), authenticity (a) and integrity (i) were considered as SR. The
assessment of the attack success probabilities of the distinct attack steps for the
BAG and the vulnerabilities for the RISKEE based approach were estimated
using the Common Vulnerability Scoring System [15], using its Base Metrics.

We used the described use case as input to the framework and configured it to
find the fastest, the most secure, the fastest secure, and most power-efficient and
secure solution, both using the BAG and RISKEE based method. The overall
system power consumption and performance was normalized. We assume that
the described system performs distance-based access control. Hence, an attacker
breaking the session key temporarily gains access to the secured location and
might acquire the authorization to perform further criminal actions. Depending
on the secured location, a successful attack might enable the disclosure of secret
information, the theft of valuable items, or other critical actions. An attacker
who can also disclose the keyless entry system’s master key could perform such
an attack on multiple locations, depending on the key distribution policy.

Table 4. Most secure and fastest solution.

HWC Options (most secure) Options (fastest)

AP (node & anchor) HW crypto; TEE SW crypto functional

SE (node & anchor) EAL 6+ EAL 4+

UR (node & anchor) HW crypto; 2 separate MCUs SW crypto functional

avg ap/avg rv 0.0005/114.4$ 0.016/4911$
norm perf. �2.57 1.0
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Based on these considerations and a documented real-life incident3, risk
experts set the impact of disclosing the system’s session key to 100.000$, the
impact of disclosing the master key to 10.000.000$. This estimation bases on
the assumption that with the session key, the attacker can only access one car
temporarily. However, with the master key, the attacker might gain access to
multiple cars. In this latter case, also the experts considered the reputational
damage. They set the frequency for disclosing the session key to 10, and the
frequency for the master key disclosure to 5 per year. We modeled these esti-
mated impacts and frequencies in the RISKEE based approach. One must note
that the attacks’ vulnerabilities and the attack success probabilities are equal
for the RISKEE and BAG based approach. We set the maximum allowed risk
value of 1.000$ for all attack goals. For the BAG based method, we configured
the framework to regard all solutions, in which at least one attack goal’s attack
success probability exceeds the threshold of 0.002, as insecure. Table 4 describes
the fastest, and the most secure system architecture found by the framework.
The table shows that the framework can correctly identify optimal solutions
based on distinct optimization criteria.

Fig. 2. Solution space identified by the framework using the BAG based method.

3 https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/.

https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/
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Figures 2 and 3 show all solutions found by the framework based on their nor-
malized system performance, power consumption and the number of exceeded
security goals for BAG and RISKEE based security constraint calculation,
respectively. Both the BAG and the RISKEE based method only consider a
small number of solutions to meet their respective security constraints. Both
approaches found the same solution space. Out of 5.898.240, the RISKEE based
method only considered 320, the BAG 1.643 solutions to be secure. In com-
parison, the RISKEE method reduced the solution space of a secure solution
by another 80.52%. Considering the solutions found using the BAG and the
RISKEE based method, one must notice the difference in the selection of options
for the distinct hardware components. This difference only comes from the fre-
quency and the impact with which the risk experts considered the attacks on
the key material in the RISKEE based approach. The BAG based method does
not reflect these two attributes.

Fig. 3. Solution space identified by the framework using the RISKEE based method.

Figures 5 and 4 show the numbers of found solutions ordered by their average
attack success probability and average mean risk, respectively. One can see that
for the BAG based calculation, the majority of the found solutions (41.67%)
has an average attack success probability of less than a fourth (�0.0005) of the
solution with the highest attack success probability. Considering the RISKEE
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Table 5. Fastest secure solutions found based on average attack probability (avg ap),
average risk value (avg rv) and performance.

HWC Fastest secure (BAG) Fastest secure (RISKEE)

AP (node & anchor) HW crypto; TEE HW crypto; TEE

SE (node) EAL 4+ EAL 6+

SE (anchor) EAL 4+ EAL 5+

UR HW crypto, TZ, HW firewall HW crypto, TZ, HW firewall

avg ap/avg rv 0.00069 199.5$

norm. perf. �1.13 �1.35

Fig. 4. BAG based solutions found by the framework categorized according to their
average attack success probability. Stepsize of 9.95 ∗ 10−5.

based calculation, the majority of solutions (64%) identified by the framework
lies between 1406$ and 2700$ of the average mean risk value. For both calculation
approaches, the framework found the least number of solutions (1.58% and 0.4%
respectively for BAG and RISKEE based approach) in the most insecure fourth
considering their average attack success probability/average mean risk. Table 5
describes the fastest secure solution found by the BAG and RISKEE method.
Table 6 the most power-efficient secure solutions, given their average attack prob-
ability and average mean risk. One must notice that for both the secure solutions
with optimal performance and power consumption, the RISKEE based solution
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Fig. 5. RISKEE based solutions found by the framework categorized according to their
average mean risk. Stepsize of 31.

chooses options with higher security attack mitigation capabilities than the BAG
based approach, for both the SE and the AP of the anchor and node device. The
increased level of security chosen for the SE is due to the high impact, with
which the disclosure of the session key and the master key comes.

Said impact increases the influence of a successful key disclosure on the aver-
age mean risk of the overall system dramatically. A similar result can be seen
when considering the most power-efficient and secure solutions, regarding their
average attack success probability and mean risk value, respectively. Also, for
this optimization criteria, the BAG based method chose less secure options for
the SE, but also for the node’s AP, compared to the RISKEE based method.

Based on these results, we observed that a risk-based analysis, such as pro-
vided by RISKEE, improves the level of detail with which one can model attack
scenarios. This higher granularity in the security constraints comes with addi-
tional computational overhead. The use case scenarios were executed on a system
comprising 16 GB of RAM and a Intel® Core™ i7-4600U CPU with 2.10 GHz.

Table 7 shows the results of assessing the framework’s scalability and the
computational overhead of calculating the security constraints using the BAG
and RISKEE based methods. We executed both methods with attack graphs
comprising 18, 37, and 56 attack nodes (AN), both with and without using the
break criteria for the calculation of secure solutions, as described in Sect. 3. It
includes the ratio between the execution times of the full security constraint
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Table 6. Most power efficient and secure solutions found based on average attack
probability (avg ap), average risk value (avg rv) and power consumption (power cons).

HWC Most power eff. secure (BAG) Most power eff. secure (RISKEE)

AP (node) SW crypto-lib sc sec.; TEE HW crypto; TEE

AP (anchor) SW crypto-lib sc sec.; TEE SW crypto-lib sc sec. TEE

SE (node) EAL 4+ EAL 6+

SE (anchor) EAL 4+ EAL 4+

UR (node) HW crypto, TZ, HW firewall HW crypto, TZ, HW firewall

UR (anchor) HW crypto, TZ, HW firewall HW crypto, TZ, HW firewall

avg ap/rv 0.00074 198.67$
power cons �1.014 �1.025

Table 7. Computational overhead for BAG and RISKEE based security constraint
calculation for attack graphs with different number of attack nodes (AN).

# of AN BAG (break) BAG RISKEE (break) RISKEE

18 502s 551s/1.09 2021s 3509s/1.74

37 1943s 2052s/1.05 3315s 5597s/1.69

56 8556s 9337s/1.09 15826s 23670s/1.5

calculation and the optimized approach, both for the BAG and RISKEE based
calculation. For the BAG based method, one must notice that the break cri-
teria can speed up the calculation by ∼5% to ∼9%. For the RISKEE based
method, the calculation time is reduced by ∼50% to ∼70%. In general, one can
see that the RISKEE based method can capture more details for calculating
security constraints. However, its calculation takes ∼2.5 to ∼6.3 times longer,
when compared to the BAG based method. The higher reduction of the com-
putational overhead for the RISKEE based method comes from the relatively
higher risk calculation delay induced by this method. Hence, the more risk calcu-
lation the framework can skip, the higher the speedup of the overall calculation
becomes. This speedup also shows that the attack probability calculation using
the BAGs is much more efficient.

The consumer device based use case shows the difference in the BAG and
RISKEE based calculation of secure system solutions. We show that the addi-
tional information regarding an attack’s impact and frequency, used in the
RISKEE based approach, can lead to vastly different results regarding the
security constraints. This additional information leads to more time-consuming
computation. Considering the maximal calculation time of the RISKEE based
method (∼6 h 30min), a more efficient approach must be found. For future work,
we will develop a combination of BAG and RISKEE based attack graphs.
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5 Conclusion and Future Work

In this paper, we presented a DSE framework, which offers the designers to
model cybersecurity threats as BAGs or risk trees. Thereby, the DSE framework
automatically calculates a set of security constraints from these modeled security
attack scenarios and finds an optimal and secure system partitioning and task
allocation, with additional consideration of performance, power consumption,
and other constraints. Based on a commercial consumer device use case, we
showed the framework’s feasibility and the distinct methods’ scalabilities.

The approach’s main limitation is the source from which to draw the infor-
mation about the attack success probabilities and the attack frequencies for
both BAG and RISKEE based calculation. At the moment, only security expert
knowledge serves as input. One must also consider the same limitation for the
assessment of the mitigation capabilities of hardware components. No method
has yet been published on how to rate a system’s ability to withstand security
attacks. Hence our assumptions for the component’s mitigation capabilities are
based on CC certifications. In future work, we will focus on proposing such a
method and on a combined calculation utilizing both the BAG and the RISKEE
approach within the DSE framework.
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Abstract. In Vehicle-to-Grid (V2G) scenarios, Electric Vehicle (EV)
batteries serve as distributed energy resources that help stabilize power
supply through managed (dis)charging. The effective and safe grid inte-
gration is only possible when an Electric Vehicle Charging System
(EVCS) responsible for the battery management and V2G communi-
cation is counterfeit-free and protected against malicious attacks. By
manipulating the EVCS, adversaries can cause financial and physical
damage and increase the risk of hazardous situations such as fire and
traffic accidents. In this paper, we introduce secEVCS, a security architec-
ture for EVCSs, which ensures that only a vehicle with a manufacturer-
approved charging system can connect to the grid by securely binding
all components of the EVCS. Our solution is based on the enhanced
authorization functionality of the Trusted Platform Module (TPM) and
protects against the installation of counterfeit products and re-use of
secret data stored in scrapped EVCSs. We implemented secEVCS using a
TPM 2.0 chip and the V2G protocol specified in the ISO 15118 standard
to show the feasibility and to evaluate the performance of our solution.

Keywords: Electric vehicle charging · Security · TPM 2.0 · ISO 15118

1 Introduction

The worldwide adoption of EVs, i.e., fully battery-powered and plug-in hybrid
vehicles, is growing, with the 5 million mark reached in 2018 [8]. The need to
charge EV batteries causes an extra load on electric grids, but their storage
capacity can be used by V2G services to handle power fluctuations [3]. The
V2G technology allows EVs to communicate with the grid to optimize charging
profiles, e.g., to limit the charging rate or to feed energy from batteries back
to the grid during high demand. For this purpose, V2G communication proto-
cols such as ISO 15118 [10] were developed. Using these protocols, an EV can
inform the grid of its preferences (energy amount, departure time, etc.) and
negotiate a grid-friendly (dis)charging schedule. The support for bidirectional
power transfer services is provided by the vehicle’s EVCS with two connected
components: an Electric Vehicle Communication Controller (EVCC) and a Bat-
tery Management System (BMS) responsible for the V2G session handling and
c© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 387–401, 2020.
https://doi.org/10.1007/978-3-030-54549-9_26
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battery management, respectively. As the degradation rate of EV batteries is
affected by the charging strategy, ensuring their correct operation during V2G
sessions is equally important to servicing the grid [18]. Besides, Li-ion batter-
ies are prone to overheating and can self-ignite due to improper (dis)charging
control [1,21].

The possibility to cause safety hazards and the V2G connectivity can provide
a strong incentive for malicious attacks aiming to subvert the functioning of the
EVCS. For example, if an adversary manipulates the BMS part of the EVCS or
replaces it with a tampered one, s/he can damage the battery by deliberately
operating it outside of the safe range, which can eventually lead to its failure
and the danger of fire or explosion [14,15]. In case several EVCSs connected
to the grid are under adversarial control, they can be turned into a botnet of
high-wattage devices for a coordinated attack aiming for local power outages or
large-scale blackouts [20]. Another critical aspect is the usage of counterfeit com-
ponents in EVCSs. The growing market and high price of EV batteries attract
criminals selling expired or low-quality counterfeit spare parts, which do not
meet regulatory standards and are potentially unsafe [17].

In this paper, we propose a new security architecture for EVCSs, further
referred to as secEVCS, which guarantees that a vehicle participating in V2G ser-
vices has a manufacturer-approved configuration of EVCC and BMS by securely
binding these components. secEVCS uses a TPM in the EVCC and the Device
Identifier Composition Engine (DICE) [25] in the BMS as security anchors. The
general idea is to only allow access to a V2G authentication key, which is required
for connecting to the grid, if the binding is successfully verified using the TPM’s
enhanced authorization functionality. secEVCS protects against the installation
of counterfeit spare parts and re-use of secrets from scrapped EVCSs. We imple-
mented secEVCS using a hardware TPM and ISO 15118 [10] for V2G communi-
cation1 to evaluate secEVCS under realistic constraints. To our knowledge, TPMs
have not been deployed in this scenario yet and the analysis of the trade-offs is
missing. Our work aims to close this gap.

The rest of the paper is structured as follows: First, we introduce the neces-
sary background on TPMs to be able to understand the paper in Sect. 2. Next,
we discuss related work in Sect. 3. In Sect. 4, we define our system model and in
Sect. 5 analyze safety-related security threats. Security and functional require-
ments are defined in Sect. 6. In Sect. 7, we introduce secEVCS before we describe
and evaluate our prototype in Sect. 8. We discuss the applicability of our solution
in Sect. 9 and conclude the paper in Sect. 10.

2 Background on Trusted Platform Modules (TPMs)

The TPM 2.0 Library Specification [23] defines a catalog of functionalities that
can be used to build the second iteration of the TPM for different platforms.
1 The ISO 15118 standard series is actively adopted by the industry, e.g., the CharIn

network (www.charinev.org). While we focus on the current protocol specification,
ISO 15118-2, we consider the 2nd edition draft, ISO 15118-20 [11], whenever relevant.

www.charinev.org
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Accompanying the TPM specification, a TPM Software Stack (TSS) 2.0 specifi-
cation [26] defines multiple Application Programming Interfaces (APIs) for dif-
ferent application scenarios. A TPM is a microchip designed to provide security-
related functionalities, e.g., secure storage and usage of cryptographic keys. A
central functionality in our solution is the enhanced authorization functionality.
All objects of a TPM, e.g., cryptographic keys, can be authorized with a policy
that must be satisfied in order to authorize an action on that object. Policy asser-
tions are sent to the TPM before the command being authorized. Our solution
also uses the internal Non-Volatile (NV) memory of a TPM, which retains con-
tent even if the power is off. This memory can be used to make keys of the TPM
persistent but can also be allocated by applications to create indexed strongly
monotonic NV counters. In the following, we list the TPM 2.0 commands and
policy assertions relevant for our proposed solution.

– TPM2 Create. This command is used to create all kinds of objects for the
TPM. This includes cryptographic keys usable for authenticating to external
entities. During creation, an (enhanced authorization) policy can be provided
that restricts usage of the created object.

– TPM2 Sign. This command calculates a signature using a private key cre-
ated via TPM2 Create. These signatures can be used for authenticating a
device or for asserting data integrity and origin.

– TPM2 VerifySignature. The TPM can verify a signature using a provided
public key. This operation by itself is much faster when implemented in soft-
ware and does not require the secure execution environment of a TPM. This
operation is to be used in conjunction with TPM2 PolicySigned.

– TPM2 NV DefineSpace. This command is used to define an NV index.
Depending on the assigned index number, the NV index is either part of the
user-owned (storage hierarchy) or of the platform-/OEM-owned (platform
hierarchy) areas of the TPM. For the sake of this paper, only OEM-owned
indices are used.

– TPM2 NV Increment. This command is used to increment a TPM NV
counter value.

– TPM2 StartAuthSession. In order to fulfill any authorization policy, the
application needs to start a policy session using the TPM2 StartAuthSession
command. Then the actual policy statements are subsequently satisfied by
invoking the corresponding TPM commands.

– TPM2 PolicyAuthorize. This command allows the activation of policies
after the definition of an object. In order to achieve this, a public key is
registered with a policy. This policy element then acts as a placeholder for
any other policy branch that is signed with the corresponding private key.

– TPM2 PolicyNV. The PolicyNV element provides the possibility to include
NV-indices in the evaluation of a policy. Amongst other operations, it can be
used to test whether an NV counter index has a certain value or whether it
is smaller or greater.

– TPM2 PolicySigned. This policy element can be used to validate a signa-
ture before granting object usage. A public key is registered with the pol-
icy. In order to satisfy a TPM2 PolicySigned, a TPM generated nonce (from
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Fig. 1. System overview

TPM2 StartAuthSession) must be signed by the holder of the private key
corresponding to the registered public key.

– TPM2 PolicyTicket. In order to speed up operations, a TPM2 Policy
Signed can return a ticket that is valid for a certain amount of time.
Instead of having to execute the same sequence of TPM2 VerifySignature
and TPM2 PolicySigned, the ticket can be replayed into a TPM2 PolicyTicket
command instead. This saves the round trips with the owner of the private
key for a predefined amount of time. The expiration time is already denoted
in the policy during its creation.

3 Related Work

The use of trusted computing in vehicle communication scenarios is commonly
discussed. In [30,31], solutions for privacy-preserving EV charging and billing
based on Direct Anonymous Attestation techniques using a TPM are introduced.
In [29], the authors use TPM-based remote attestation for identity and integrity
verification in the V2X scenario. The authors of [28] propose to use a Mobile
Trusted Module for remote attestation in V2G networks. In their system, an EV
directly sends its integrity metric to the grid server to verify its trustworthiness.
The work in [7] presents a privacy-aware architecture for V2G networks. As part
of this solution, a TPM in EV batteries is used for encrypted communication
of charging status, accumulation of information in sealed storage and remote
attestation. In [19], another security architecture for V2G networks is discussed
using a TPM in EV batteries for remote attestation. In [5], the authors propose
to include a TPM in a head unit (also called infotainment system) to realize
protocols for secure update, remote attestation, and sensitive data protection.

In our previous work [4], we introduce TrustEV, a security architecture for
secure provisioning, storage and usage of ISO 15118 credentials in an EV based
on TPM 2.0. Similarly, the TPM is used to store and control access to authen-
tication keys of the EVCC. The main feature of TrustEV is the direct import of
the ISO 15118 keys created by a third party into the EVCC’s TPM. TrustEV can
be combined with secEVCS to additionally support secure components binding.

4 System Overview

Figure 1 gives an overview of our assumed system. An Electric Vehicle Charg-
ing System (EVCS) comprises a Battery Management System (BMS) with an
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integrated rechargeable battery and an Electric Vehicle Communication Con-
troller (EVCC) with a TPM providing it with security services (cf. Sect. 2). As
TPMs are common in modern cars [9], this assumption is not limiting.

The BMS’s major function is to maintain the vehicle’s battery within its
safe operating range, to monitor its state (i.e., state-of-charge, state-of-health,
and state-of-function) and to assess the available energy amount [2]. The BMS
also controls battery cooling/heating, operates power switches, and exchanges
charging-related data via a Controller Area Network (CAN) bus with the EVCC.

The EVCC is responsible for communication with a Supply Equipment Com-
munication Controller (SECC) of a charge point during V2G service sessions and
supports automated authentication of EVs (i.e., Plug&Charge). We assume an
EV has to identify and authenticate itself against an SECC by means of a so-
called authentication key stored in its EVCC before it can connect to the grid
for charging. In ISO 15118, this key is part of the vehicle’s OEM provision-
ing or contract certificate. When negotiating a charging schedule for a V2G
session with the SECC, the EVCC queries the BMS on such parameters as bat-
tery state, allowed current and voltage. Together with the expected departure
time and other user-defined charging preferences, this information is crucial for
demand-side management aimed to improve efficiency and stability of the grid.
Grid-friendly charging behavior can be awarded with reduced tariff rates. While
charging, the EVCC periodically receives metering receipts from the SECC for
signing that may later be used to bill the EV’s driver for the charged energy.

The life-cycle of an EVCS and its components includes several stages. The
BMS and the EVCC are produced by respective Original Equipment Manufac-
turers (OEMs) that provide firmware and cryptographic keys. An automotive
OEM creates for an EV a unique Vehicle Identification Number (VIN)2 and
authentication key, while a battery OEM provides a BMS with a unique identity
key. The cryptographic keys are assumed to be created by OEMs in a secure
way and not leaked during manufacturing. When deploying a new EVCS in a
vehicle, the EV’s manufacturer defines a safety-approved configuration, by bind-
ing a BMS to an EVCC. Replacing or updating any of the EVCS’s components
can be carried out in an authorized repair shop, where a new approved con-
figuration will be created. A drained EV’s battery can also be replaced with
a fully-charged one in a battery swap station operated by a battery swapping
company [22]. We assume backend systems of the OEMs and service providers
exchange information securely using a common Public Key Infrastructure (PKI).

5 Safety-Related Security Threats

The EVCS of a vehicle is a safety-critical system. The growing number of reports
on self-ignition of EV batteries while charging or in driving [21], shows the poten-
tial for adversaries not only to damage EVs and their components but to harm
their passengers or people in the vicinity with targeted attacks. In [15,16], the
2 VINs mainly conform to two international standards ISO 3779 and US Standard

FMVSS 115; a VIN is always 17 characters long.
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authors propose a Security-Aware Hazard and Risk Analysis Method (SAHARA)
and use it to identify threats for a BMS and estimate the risk. Threats for BMS
and potential effects are also analyzed in [14]. Based on these analyses, we con-
sider the following threat scenarios with their possible safety impact:

Configuration Tampering. An adversary replaces the BMS in the EVCS with
one that is not approved by the OEM and/or under full control of the adver-
sary. This could also be done by the EV’s driver who aims to extend the
range of the vehicle by upgrading the battery [6]. Such action would violate
the OEM’s warranty. Impact: The attack affects the EVCS’s integrity and
has multiple safety implications. The adversary can modify battery informa-
tion, e.g., to indicate a larger capacity than given, and control battery func-
tions to, e.g., ignore dangerous operating conditions like overheating in order
to damage the battery or cause a fire [18]. Moreover, incompatible EVCS
components can incorrectly interpret exchanged data, which can shorten the
battery lifetime and lead to hazardous situations. Disrupting demand-side
management would also affect the grid.

Charging Contract Hijacking. An adversary uses a scrapped EVCC storing
the authentication key of a valid V2G user to charge her/his own vehicle on
the uncovered account or to use the access profile to connect to the V2G ser-
vice. Impact: The attack affects the confidentiality of the EV’s key and the
privacy of the previous user of the scrapped EVCC; the integrity and authen-
ticity of V2G sessions is also breached. The latter can affect grid stability
due to unexpected charging behavior or even cause blackouts if the attack is
launched in a coordinated manner [20].

Counterfeit BMS. An adversary uses old BMSs with expired or malfunction-
ing batteries to produce and sell counterfeit products, which can still carry the
label of the original manufacturer but are not certified for safe use. Impact:
The attack affects system integrity and authenticity. Counterfeit batteries
often lack required safety protections and can easily catch fire.

6 Security and Functional Requirements

To prevent the threats defined in Sect. 5 with secEVCS, we propose to enable
access to an EV’s authentication key needed to use V2G services, only if its EVCS
is original, i.e., only if a verifiable binding between EVCC and BMS exists. This
leads to the following security requirements, which must be fulfilled:

SR1 Secure private key storage and usage. Private keys (e.g., authentication
keys, identity keys) shall be protected against leakage during their storage
and usage.

SR2 Restriction of key usage to trustworthy systems (Key usage authorization).
Access to private keys shall only be possible if the EVCS is trustworthy,
i.e., the components configurations are approved by the manufacturer and
are not manipulated.
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Fig. 2. secEVCS policy verification steps

SR3 Revocation support. It shall be possible to revoke BMS of an EVCS in case it
is removed from an EV, so that it cannot be used in another manufacturer-
approved EVCS configuration later on.

A security solution for EVCSs should bring clear benefits to the automo-
tive and EV battery industry and consumers without unnecessary restricting
legitimate usage scenarios. This results in the following functional requirements:

FR1 Minimal performance overhead. A solution shall not cause undesirable
delays in EV charging and shall meet timing constraints of standard V2G
protocols. In ISO 15118, e.g., charging may be delayed by two uses of the
EVCC’s key and key use is bound by strict timing requirements (detailed
in Sect. 8.2).

FR2 Support of legitimate component exchange. Only legitimate entities shall be
able to replace or swap the battery (including BMS) and/or EVCC while
maintaining the manufacturer-approved EVCS configuration.

7 Solution

The general idea of secEVCS is to bind EVCC and BMS of an EV and to allow
access to an authentication key only if this binding can be verified. The authen-
tication key is securely stored and used in the EVCC’s TPM and access is only
possible if a TPM enhanced authorization policy is fulfilled. This policy includes
the result of challenge-response protocol between EVCC and BMS.

secEVCS consists of an initial EVCS preparation phase for initializing and
binding EVCC and BMS (cf. Sect. 7.1), the EVCS usage phase (during the life-
time of the EV) supporting the authorization of charging sessions and the swap-
ping of batteries (cf. Sect. 7.2), and performance optimizations (cf. Sect. 7.3).
Figure 2 shows the enhanced authorization policy verification steps as the cen-
tral part of secEVCS, which are described in more detail below.

7.1 EVCS Preparation

EVCC Preparation. During manufacturing, the OEM generates an authentica-
tion key on the EVCC’s TPM. This authentication key comes with an autho-
rization policy (TPM2 PolicyAuthorize()) that refers to an OEM public key
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(cf. Fig. 2 on the right) for policy statements. To use the authentication key,
the EVCC software needs to present a policy to the TPM that was authorized
(signed) by the OEM. Thus, the newly created key cannot be accessed directly
after its generation. The OEM needs to explicitly issue (and sign) a policy state-
ment that describes, under which conditions the authentication key can be used.
We use the EV’s VIN as policy reference value of the authentication key’s policy.
This way, this key can only be accessed if a policy is fulfilled that was authorized
by the OEM with the corresponding VIN denoted during key generation, i.e., a
signed policy addresses the intended EVCC only and cannot be copied to other
EVCCs. The EVCC preparation process is represented by InitTPM() in Fig. 3a.
If key generation on the TPM is not possible, keys can be also generated outside
and imported into the EVCC’s TPM (e.g., in ISO 15118 using TrustEV [4]).

BMS Preparation. The BMS is equipped with a DICE [25] (cf. InitDICE() in
Fig. 3a), as a cheap alternative to a TPM suitable for highly constrained embed-
ded systems [12]. DICE generates a unique device Identifier (ID) based on a glob-
ally unique secret and a measurement of the device’s first mutable code using a
cryptographically secure one-way function. Hence, any persistent attack to the
BMS results in the generation of a different device ID. As the DICE is trusted
and has exclusive access to the unique secret, it is impossible for an attacker to
recover the secret or generate a valid device ID after a persistent attack. The
BMS can use the DICE-generated ID to secure its identity key (e.g., by using the
ID as seed to a Key Derivation Function (KDF) and using the resulting key to
encrypt the identity key before it is stored). This way, the BMS’s identity key is
also protected from persistent attacks. With this key, the BMS can authenticate
itself using a public key signature. As the BMS’ public identity key is required
for the binding between EVCC and BMS (see next paragraph), the key is read
out by the BMS’ OEM and passed to the EVCC’s OEM (cf. OEM in Fig. 3a).

BMS and EVCC Binding. At this step, the EVCC’s OEM needs to issue (sign) a
respective policy (cf. BindingPolicy and PolicySig in Fig. 3a). The policy consists
of a TPM2 PolicySigned() containing the public key of the BMS. To fulfill this
condition, a nonce generated by the TPM must be signed with the BMS’ private
key and the signature validated by the TPM. Additionally, the policy contains
a TPM2 PolicyNV() statement that links this policy to a monotonic counter
inside the TPM. If a BMS binding needs to be revoked in the future, the OEM
can increment the TPM’s counter. The signature over this policy by the OEM
also includes the VIN as policy reference value as mentioned above. This binding
can happen in conjunction with the initial key generation or at a later stage.

7.2 EVCS Usage

Charging Authorization. Access to the authentication key is only possible if
the BMS and EVCC binding is successfully verified. This process is shown in
Fig. 3b (PolicyCheck() aggregates all policy-related validations). The EVCC first
loads the authorized policy (i.e., the BMS binding policy) and policy reference
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Fig. 3. EVCS sequence diagrams

value, i.e., VIN, and verifies the signature using the OEM’s public key. The
result is a so-called signature validation ticket. Then, the EVCC starts a policy
session (TPM2 StartAuthSession()) and sends the session’s nonce as a challenge
to the BMS. The BMS signs the nonce with its private key and returns the
signature and its public key. The EVCC extends its session with a validation
of the BMS’ signature (TPM2 PolicySigned()) and the comparison of the NV-
counter (TPM2 PolicyNV()). The BMS binding is authorized using the signature
validation ticket (TPM2 PolicyAuthorize()). After this, the policy session is in a
state that grants access to the EVCC’s key operations and the EVCC can issue
a TPM2 Sign() operation to authenticate itself against the charge point.

Battery Swapping. A battery swapping company needs to maintain a backend
connection to the OEMs and perform the above BMS binding process. To inval-
idate the binding to the old BMS, the OEM increments the TPM’s counter and
then issues (signs) a new policy for the new BMS and the new counter value.

7.3 EVCS Enhancements for Better Performance

The process for key usage described in Sect. 7.2 requires the EVCC to chal-
lenge the BMS and perform the policy session assertions for each access to the
authentication key. This can lead to undesirable delays when trying to charge an
EV (e.g., in our tests it took on average 2.4 s; cf. Sect. 8.2). This can be easily
avoided by sending challenges to the BMS independent of the charging sessions
and pre-calculating the entire policy session. For example, the EVCC can send
a challenge whenever the charging port lid is opened. This way, a correct policy
session is always available before the authentication key is to be used.

Another issue is that the EVCC has to send a new challenge to the BMS each
time it needs to use the authentication key. This can delay communication proto-
cols between EVCC and SECC using this key not only for charge authorization,
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but also, e.g., to sign metering receipts. A low performance of the BMS Elec-
tronic Control Unit (ECU)3 and a low throughput of a CAN bus4, this process
(estimated to about 5.8 s) may exceed timing constraints of the protocol.

We address this issue by using a shortcut in the TPM2 PolicySigned()
command. The command can output a ticket upon validation, which can
be used in future policy sessions (within the expiration time) using the
TPM2 PolicyTicket() command as a replacement (cf. Fig. 2 on the left). This
expiration time should not be too short (to gain a speedup) and neither too
long (to restrain attacks). An expiration time of 5 min is a good starting point
to give a user enough time to initiate charging, while still preventing potential
attacks. These 5 min provide enough time to start a second policy session from
the beginning.

8 Implementation and Evaluation

In this section, we evaluate our proposed solution. We use ISO 15118-2 [10]
as communication protocol between EVCC and SECC. We describe the imple-
mented prototype and evaluate the added overhead. A minimal overhead is
important for the usability of secEVCS in terms of compliance to the timing
constraints of ISO 15118 on EVCC signature creation as well as for user conve-
nience. Additionally, ISO 15118-20 [11], the upcoming successor of [10], allows
for even tighter timing constraints, which are also considered in the evaluation.

8.1 secEVCS Implementation

Our prototype was implemented using three Raspberry Pi 3 Model B running
Linux kernel 4.14 to simulate the EVCC, BMS, and SECC. The EVCC-Pi is
equipped with an Infineon Iridium 9670 TPM 2.0. EVCC and BMS communicate
over regular Ethernet, while SECC and EVCC communicate over power-line
communication (PLC) Stamp micro 2 EVBs (similar to PLC over a charging
cable). Our test-bed is shown in Fig. 4.

To execute TPM commands, we use the TPM2-TSS5 and as ISO 15118 imple-
mentation we use RISE-V2G6, integrated with the TrustEV implementation
from [4] for EVCC Preparation (cf. Sect. 7.1). The challenge-response commu-
nication between EVCC and BMS is implemented using the Secure Shell (SSH)
protocol [13] to simulate any added security means on the automotive bus.

The expiration time of BMS signatures is set to 5 min. Challenges are sent
to the BMS 5 s before start of ISO 15118 communication (to simulate the

3 It can take an ARM Cortex-M0+ without performance optimizations up to 3649 ms
to create a signature using the algorithm and parameters defined by ISO 15118 [27].

4 Transmitting 16 byte nonce, 64 byte EC public key, and 64 byte ECDSA signature
in 18 extended CAN frames (16 bytes each with 8 bytes data and 7 bits inter-frame
spacing) with 125 kbps Low-Speed CAN takes about 20 ms under optimal conditions.

5 TPM2-TSS: https://github.com/tpm2-software/tpm2-tss.
6 RISE-V2G: https://github.com/V2GClarity/RISE-V2G.

https://github.com/tpm2-software/tpm2-tss
https://github.com/V2GClarity/RISE-V2G
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Fig. 4. Test-bed setup

time from opening the charging port lid to plugging in the charging cable)
and a minute before the current signature expires. After receiving a signature,
TPM2 PolicySigned() is called to retrieve the verification ticket. The ticket is
used by two processes to pre-calculate multiple policy sessions concurrently.
When the authentication key is used in ISO 15118, one of these pre-calculated
policies is consumed. We only use two pre-calculation processes along with the
ticket generation process, to not exceed three concurrent authorization sessions.
While a TPM must be able to support 64 active sessions, it must only be able to
hold 3 of those in RAM at a time [24]; hence, exceeding this limit would decrease
performance on TPMs that only support the minimums from [24].

8.2 Performance Evaluation

During performance evaluation, we measured the computational overhead cre-
ated by our prototype from Sect. 8.1 compared to the default RISE-V2G imple-
mentation. All measurements were repeated 100 times each using Java’s Sys-
tem.nanoTime(). During a charging loop, the EVCC alternates between sending
charging status and signed metering receipt messages. It tries to send them as
fast as possible, reaching 121.9 ms between consecutive receipts. For our measure-
ments, the EVCC sent 10 metering receipts for each of the 100 charging loops.

The time for signing ISO 15118 messages with default RISE-V2G was 15.7 ms
and with secEVCS 469.8 ms. For comparison, without the parallel pre-calculated
policies, the average signature time was 1119.8 ms, and without any of the perfor-
mance optimizations for secEVCS, i.e., with an on-demand challenge to the BMS
for each key usage and no policy pre-calculation, the time for signing ISO 15118
messages was 2437.8 ms. Our measurements for secEVCS are shown in Fig. 5
(signature #0 is for charge authorization and #1–10 for metering receipts).

With our setup, the time from sending a challenge to the BMS until receiv-
ing a signature was 277.6 ms. In Sect. 7.3, we discussed a more realistic device
configuration. Extrapolating our measurements to low power ECUs and CAN
bus, the measurements for BMS signatures would increase to 3669 ms, leading
to ISO 15118 message signing time of 5829.28 ms for secEVCS without optimiza-
tions. This correlates to the head time used for pre-calculation of sessions and
the use of the improvements proposed in Sect. 7.3.
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Fig. 5. Mean times of signature creation in a charging session

It is worth noting that with secEVCS there was a significant difference in the
times for signing charge authorization requests compared to metering receipts.
The former was on average 228.8 ms, whereas the latter – 493.9 ms. Also, the
mean time for signing the first 2 receipts of each charging loop was 304.3 ms and
the mean time for the 3rd to 10th was 541.3 ms. This is because we have only
two processes to pre-calculate policy sessions. Hence, when starting a charging
session, there are two policies ready to use and if more than two signatures need
to be created, new policy sessions need to be calculated at run-time.

In our setup with 2 parallel policy sessions (np), 121.9 ms between metering
receipts (tm), and the signature time of 228.8 ms (ts) there are only 472.6 ms
(= np × tm + (np − 1) × ts) for policy pre-calculation. Anything above that
will increase the signature time. With an average time for policy calculation of
737.4 ms, i.e., an overrun of 264.8 ms, this gives about 500 ms for signatures
without full policy pre-calculation. While this should lead to alternating signa-
ture times (after a signature with ts = 500, the available time for pre-calculation
is 743.8 ms which should allow for a fast signature), we did not experience this
effect. Instead, as a result of the parallelization, the times for the 3rd metering
receipt signature onward were much less predictable with a standard deviation
of 231 ms compared to the times for the first 2 with a standard deviation of 56.4
ms and the time for the authorization signature with a standard deviation of
4.8 ms.

Since in ISO 15118 at most the first two signatures are time-critical, i.e.,
signing a request for a new authentication key and signing the charge autho-
rization request afterwards can delay the charging start, we argue that the
achieved results are acceptable for the use-case. Regarding ISO 15118 com-
patibility, the only requirements affected by the increased EVCC signature
time are the V2G EVCC Sequence Performance Time of 40 s (time for the
EVCC to send its next request after a response from the SECC) and the
V2G SECC Sequence Timeout of 60 s (timeout of the SECC for waiting on the
next EVCC request). Even without the performance optimizations, secEVCS
stays well within the relevant limits. However, in the 2nd edition ISO 15118-20
[11], the timeout mechanism for metering receipts was changed. The SECC may
define its own arbitrary timeout in seconds. Hence, a minimal timeout of 1 s is
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possible and only the optimized secEVCS would be able to meet this minimum
(cf. Fig. 5).

9 Requirements Coverage Discussion

To prevent safety-related threats from Sect. 5, secEVCS verifies the binding
between the EVCS components prior to charging. In Sect. 6, we defined the
requirements that need to be satisfied by a secure and usable solution. Below we
informally discuss how these requirements are covered by secEVCS.

In secEVCS, the EVCC’s authentication key is generated and stored in the
controller’s TPM and can only be accessed by this TPM and used only in its
shielded location. Thus, this private key is protected from any attacks that read
keys from the memory. As the binding between EVCC and BMS is validated
based on a signature by the BMS’s identity key, secure storage of this private key
is essential for the overall security, too. To protect this key, secEVCS uses DICE.
As our solution does not require the BMS to use the TPM’s advanced security
functions, a smaller security architecture with less hardware requirements was
chosen as more appropriate. Due to the relatively high cost of a TPM, it is also
desirable to limit their number to externally facing ECUs. Thus, secEVCS meets
the security requirement Secure private key storage and usage (SR1).

The TPM always verifies, whether the EVCC is in a trustworthy state and
whether the BMS defined in the configuration provided by its OEM is present,
before allowing access to the authentication key. Thus, if an attacker has manip-
ulated or replaced the BMS, or uses a scrapped controller, the EVCC will not
be able to authenticate itself for using V2G services. This corresponds to the
security requirement Restriction of key usage to trustworthy systems (SR2).

The security requirement Revocation support (SR3) is fulfilled by the vali-
dation of the value of a monotonic counter inside the EVCC’s TPM, which can
be incremented each time an expired or malfunctioning BMS is exchanged in a
repair shop. This way, it will not be possible to use this BMS together with the
EVCC for charging because it is not part of the approved configuration anymore.

The functional requirement Minimal performance overhead (FR1) is met as
explained in detail in Section 8.2. Requirement Support of legitimate component
exchange (FR2) is also fulfilled since only an authorized OEM can register a
new BMS with an EVCC’s TPM by sending an updated policy.

10 Conclusion

Recent studies indicate fire and traffic incidents caused by manipulated EVCSs
as a major safety concern for EVs. In this paper, we proposed secEVCS, a new
security architecture aiming to prevent harmful situations by allowing only vehi-
cles with manufacturer-approved charging systems to (dis)charge electric energy
at charge points. This guarantee is achieved through securely binding the compo-
nents EVCC and BMS responsible for charging authentication and management
using the enhanced authorization feature of the EVCC’s TPM. This binding
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is verified each time the EV wants to use its authentication credential, which
turned out to be challenging with regard to user convenience and communication
timeouts. In order to evaluate our solution within realistic constraints, we imple-
mented secEVCS using a TPM 2.0 chip and ISO 15118-2 [10] as a V2G protocol.
Also, the upcoming ISO 15118-20 [11] with harder timeouts was considered in
our evaluation. While the performance overhead is acceptable for the use case
and within the timing constraints of ISO 15118-2, a straightforward approach
of TPM-based component binding cannot meet the new requirements. With the
new edition, conformance to the standard can only be guaranteed if all proposed
secEVCS performance optimizations are in place.

Our results provide a useful reference for future work that can address the
shown limitations (e.g., timing conditions or runtime attacks on EVCS) or adopt
secEVCS as a security anchor in broadened scenarios, e.g., secure load manage-
ment. We also plan a collaboration with industry as part of technology transfer.
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Abstract. Embedded systems, which are at the core of many small
scale and large scale machines, are affected by external disturbances
which can introduce control flow errors. These control flow errors can
affect the control program executing on the embedded system, poten-
tially causing sensor signals to be misinterpreted or actuators being mis-
controlled. Software-implemented control flow error detection techniques
have existed for many years, although there is little literature about
these techniques being tested on input/output-driven programs. This
paper presents a hardware-in-loop-based fault injection campaign per-
formed on a typical industrial setting, i.e. a small scale factory. Thanks
to hardware-in-loop simulation, we can perform the fault injection cam-
paign without the risk of breaking a mechanical or an electrical part. For
our fault injection campaign, we considered both the unprotected control
program and the version protected with our RACFED error detection
technique. The results show that up to 58% of the injected control flow
errors can affect the unprotected control program in a dangerous man-
ner. Implementing RACFED clearly lowers this percentage to less than
4%, showing this technique can be used in industrial settings.

Keywords: Hardware-in-the-loop simulation · Fault injection ·
Control flow error

1 Introduction

Today, industry is becoming more and more data-driven, also known as Indus-
try 4.0 [8]. While the Internet-of-Things makes this shift possible, it also creates
a much harsher working environment for embedded systems that are at the core
of many small and large scale machines. By interconnecting all these machines,
often using wireless communication, electromagnetic interference is now a major
form of disturbance for those embedded systems [3,5,12]. Combined with other
technology trends such as decreasing transistor feature sizes and lowering sup-
ply voltages, embedded systems are inherently more susceptible for external
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disturbances [1,7,11,13,16,24]. These disturbances range from electromagnetic
interference and high-energy particles to temperature fluctuations and they may
introduce bit-flips in the system’s hardware [10,14]. In turn, these bit-flips can
cause control flow errors (CFE), unwanted jumps in the system’s software. This
can lead to misinterpreting sensor readings, erroneously controlling actuators or
even crashing programs [9].

To protect embedded systems, many software-implemented CFE detection
techniques have been proposed [2,15,18,20,22]. Such techniques add extra con-
trol variables and their update instructions to the target programs. At run time,
the added instructions are executed and calculate a run-time value for the con-
trol variable. At certain points in the target program, the run-time value and the
compile-time value of the control variable are compared to one another and a
mismatch indicates a CFE has occurred and has been detected. However, these
measures are often only validated using data-driven case studies, such as matrix
multiplication, fast fourier transform or cyclic redundancy check calculations.
To expand the validation of such techniques, we created a small scale factory
that enables the validation of CFE detection mechanisms using an input/output-
driven case study [23]. In that work, we merely performed a preliminary study
on the effects of CFEs on the control programs of the small scale factory. This
paper builds upon that work by proposing a hardware-in-loop-based (HIL) fault
injection setup. This allows us to execute the control programs of the small scale
factory in a simulated environment and enables an extensive fault injection study,
without the risk of breaking mechanical or electrical parts.

The remainder of this paper is structured as follows. Section 2 describes the
small scale factory and how a CFE detection technique is added to its control
programs. Following, Sect. 3 presents the built fault injection setup. Next, the
effects of the injected CFEs on those control programs are discussed in Sect. 4.
Then, the drawback of this HIL simulation is described in Sect. 5. Finally, future
work is presented in Sect. 6 and conclusions are drawn in Sect. 7.

2 Case Study

This section presents our small scale factory and discusses how its control pro-
grams are protected against CFEs by implementing our Random Additive Con-
trol Flow Error Detection (RACFED) technique.

2.1 Small Scale Factory

Our small scale factory consists of three stations from the Festo-Didactic MPS R©

series: a distribution station, a testing station and a sorting station [6]. Com-
bined, they represent a closed process, in which workpieces are pushed out of
a stacked magazine and transported to the testing area where only the good
workpieces are moved to the final station, which in turn sorts them by color. In
total, the small scale factory is able to distinct between six types of workpieces.
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Regarding the color, it recognizes three types: silver, red and black, and for each
color, there are correct workpieces and wrong workpieces.

As the stations’ names imply, each station performs a part of that process.
The setup is shown in Fig. 1, with the distribution station on the left, the testing
station in the middle and the sorting station on the right. To drive each station
and thus to execute the control program, we selected an NXP LPC 1768 which
is an ARM Cortex-M3 driven microcontroller. We selected the ARM Cortex-M3
because it is an industry leading 32-bit processor. For more information about
the functionality of each station and how the control programs are developed,
the reader is referred to our previous work [23].

Fig. 1. The small scale factory. On the left the distribution station, in the middle the
testing station and on the right the sorting station. The workpiece flow goes from left
to right.

2.2 Adding CFE Detection

To make the control programs more fault tolerant, the first step is to apply a
CFE detection technique. For this paper, we opted to implement our in-house
developed RACFED technique [22]. RACFED detects CFEs by inserting a con-
trol variable and its update instructions in the target code. As shown in Fig. 2,
RACFED is implemented in the assembly code of a control program, using a
basic block as implementation unit. A basic block is a sequence of consecutive
instructions with exactly one entry and one exit point. Together, basic blocks
and edges which show the intentional paths between basic blocks, a program can
be visualized in a control flow graph. In fact, Fig. 2 shows the control flow graph
of a sample program, with RACFED implemented. Shown in the normal font are
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Fig. 2. RACFED implemented for a sample program in the assembly code.

the original program instructions and shown in bold are the instructions inserted
by RACFED to detect CFEs, with the control variable held in register r11.

At the beginning of each basic block, a control variable update instruction
is inserted. This update instruction is followed by a verification instruction that
compares the run-time value of the control variable with its compile-time value.
If there is a mismatch between the two values, a CFE is detected and control
is transferred to an error handler, here located at address 0x24c. This error
handler is defined by the user and is out of scope for this paper. Next, control
variable update instructions are inserted after each non-branch instruction. The
final control variable update instruction is executed conditionally when the basic
block ends in a conditional branch.

Implementing RACFED in the assembly code of the control programs man-
ually would be too time consuming and too error-prone. Therefore, we adjusted
the compiler flags of the control programs to use our in-house developed GCC
plugin that can automatically add the supported CFE detection techniques to
the assembly code [21]. This GCC plugin supports up to ten CFE detection
techniques, including RACFED, and currently two instruction set architectures,
i.e. ARMv6-M and ARMv7-M. Figure 2 uses ARMv7-M as assembly code, since
this is the instruction set of the selected NXP LPC 1768. For more informa-
tion on RACFED or the GCC plugin1, the reader is referred to [22] and [21],
respectively.

Of course, adding RACFED to the control programs increases the instruction
count of those programs, leading to an increase in code size and execution time.
Although not important for the small scale factory, since memory is abundant

1 Available as open-source project on https://github.com/MGroupKULeuvenBruges
Campus/CFED Plugin.

https://github.com/MGroupKULeuvenBrugesCampus/CFED_Plugin
https://github.com/MGroupKULeuvenBrugesCampus/CFED_Plugin
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and there are no deadlines to be met, we measured both types of overhead. The
code size overhead was measured by using the GNU size tool on the compiled
program, i.e. on the produced .elf file. This shows the amount of extra instruction
memory needed to store the protected program, relative to the unprotected
program. The execution time overhead is measured using an on-board hardware
timer of the NXP LPC 1768 and shows the extra time it took for the protected
control program to process one workpiece relative to the unprotected control
program.

The measurement indicate that using RACFED to detect CFEs has increased
the code size of the control programs by a factor of ×1.66 for each station.
Nonetheless, this has no impact on the execution time overhead. The time nec-
essary to process one workpiece for the protected control program and the unpro-
tected program is the same. This is because the control program is mainly waiting
for the mechanical parts to have moved. During this wait, no instructions are exe-
cuted, leading to the same execution time for the unprotected and the protected
control program. These measurements show that the impact of implementing a
software-based CFE detection methods depends from use case to use case.

3 Fault Injection Setup

In order to analyse the effects of CFEs on the control program of each of the sta-
tions, we have built a HIL-based fault injection setup. Hardware-in-loop means
that the LPC 1768 is removed from its station and is plugged into a hardware
simulation of its respective station. This hardware simulation will provide the
necessary input signals to the LPC 1768 in order to execute the station control
program, and it will analyse the output signals of the LPC 1768. We opted to
perform fault injection using a HIL setup to avoid breaking mechanical or elec-
trical parts of the actual stations, as we do not know all potential effects of CFEs
on the control programs. This section will first discuss the hardware setup, later
the software execution is presented, concluding with the executed experiments.

3.1 Architecture

To inject control flow errors in the control program of each station, we created
the architecture illustrated in Fig. 3. As shown, the built setup has four major
parts: a computer, a USB-hub, the target LPC 1768 and another LPC 1768
which executes the HIL code to simulate the sensors and actuators of the actual
hardware.

Our in-house developed software-implemented fault injection (SWIFI) tool
executes on a computer, which is connected to the on-chip debugger of the target
LPC 1768 through a USB-hub [19]. Using the on-chip debugger, the SWIFI tool
has access to the program counter register of the microcontroller. By injecting
bit-flips in this register, CFEs are introduced into the control program. The
target LPC 1768 is connected to the computer through the controllable USB-
hub to enable hard-resetting the target. From time to time, the communication
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Fig. 3. The hardware setup built for the HIL-based fault injection campaign.

between the computer and the on-chip debugger of the target can get corrupted.
To solve this, the SWIFI tool can issue to the USB-hub to power down and re-
power the USB-port to which the target is connected. This power-cycling of the
USB-port resets the target and enables to establish a new connection between
the SWIFI tool and the on-chip debugger of the target.

To make sure that the station control program executes, we developed a HIL
program that provides the necessary digital inputs to the target LPC 1768 and
that analyses the received digital outputs send by the target. This HIL program
also executes on an LPC 1768, indicated as HIL LPC1768 in Fig. 3. To provide
the necessary digital inputs and to analyse the digital outputs of the target, both
LPC 1768 are connected through several digital I/O connections. To be able to
report the status of the station control program, and to know when to start
providing inputs to the target, the HIL LPC 1768 is connected to the computer,
and in fact the SWIFI tool, through a serial interface.

3.2 Injecting a CFE

To inject a CFE the following steps are executed:

1. The SWIFI tool determines an origin program counter value for the CFE.
Based on that origin value, a destination value is created by flipping a single-
bit of the origin value. To make sure the destination value is valid for the
current control program, the disassembly file of the control program is pro-
vided to the SWIFI tool. The disassembly file holds all valid program counter
values for the current program and can thus be used by the tool to select a
destination program counter value.

2. Once both the origin and destination of the CFE are selected, a thread is
started to inject the defined CFE. This thread waits until the program counter
holds the origin value and then corrupts it to the destination value.
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3. Once the thread to inject a CFE is started, the SWIFI tool creates a second
thread which sends the command to the HIL LPC to start the process of pro-
viding the necessary digital inputs to the target LPC to simulate a workpiece
that must be processed. Once the HIL LPC has received this command, it
will sequentially provide the necessary digital inputs and for each provided
digital input, it will check to see if the target LPC provides the correct digital
outputs.

Once both threads have executed, the effect of the injected CFE is analyzed.
This is done by analyzing the state of the control program and by sending a
command to the HIL LPC, which then sends back whether or not all digital
outputs from the target LPC were correct. Based on the response of the HIL
LPC and the state of the control program, the effect of the CFE is categorized
in one of the following four categories:

– Detected (Det): The CFE is detected by a software-implemented CFE
detection mechanism.

– Hardware Detected (HD): The CFE is detected by a hardware measure
present in the LPC 1768. Many microcontrollers have error detection mecha-
nisms implemented in their hardware. Such error detection mechanism enable
the detection of improper bus usage, stack corruption, etc. This category indi-
cates that the CFE was detected by such a hardware error detection mecha-
nism.

– Silent Data Corruption (SDC): The CFE remained undetected and was
able to corrupt the execution of the station control program. This means that
the HIL LPC responded with an error code, indicating that while processing
a simulated workpiece, the target LPC provided incorrect outputs. This is
the most dangerous effect a CFE can have and should be avoided as much as
possible.

– No Effect (NE): The CFE remained undetected but had no effect on the
execution of the station control program. This is an indication of the inherent
CFE resilience of the control program.

3.3 Executed Experiments

In this paper, we conducted two types of experiments for each station control
program. The first type of experiment injected CFEs contained within a control
program function. This means that both the origin program counter value and
the destination program counter value belong to the same control program func-
tion. The results of this type of experiment will be indicated as IntraFunc for
the remainder of this paper. The second type of experiment injected CFEs that
jumped between two control program functions. In these experiments, the origin
program counter value belongs to one function, while the destination program
counter value belongs to another program function. The results of this type of
experiment will be indicated as InterFunc in the following sections.

To analyze the effects of CFEs on the unprotected control programs, we
injected 1000 IntraFunc and 1000 InterFunc CFEs for each control program
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function. For the testing station, we executed these experiments twice: once
simulating a correct workpiece and once simulating a wrong workpiece. Simi-
larly, we performed these experiments three times for the sorting station: once
simulating a silver workpiece, once simulating a red workpiece and finally, once
simulating a black workpiece.

To determine the efficiency of RACFED, we repeated this fault injection
campaign for the protected version of the control programs. To compensate for
the increase in instructions, we injected 2000 IntraFunc and 2000 InterFunc
CFEs for each protected control program function.

4 Impact of the Injected CFEs

The results of the fault injection experiments are shown in Fig. 4 and Fig. 5, in
which WP stands for workpiece. The two figures show the results of the IntraFunc
fault injection campaign and that of the InterFunc fault injection campaign,
respectively. In dark-green, the faults detected by RACFED are indicated, in
light-green the HD category is represented, the NE category is depicted in orange
and because the SDC category represents the worst possible effect of a CFE, it
is illustrated in dark-red.

Fig. 4. Results of the IntraFunc fault injection campaign. (Color figure online)

When analyzing the IntraFunc results, it is clear that the unprotected control
programs are vulnerable to these types of CFEs. Furthermore, the testing station
shows to be even more sensitive to IntraFunc CFEs than the other two stations.
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Fig. 5. Results of the InterFunc fault injection campaign. (Color figure online)

As shown in Fig. 4, the IntraFunc CFEs resulted in an SDC ratio of 29.4% for
the distribution station and in an average SDC ratio of 28.0% for the sorting
station, the testing station reports an average SDC ratio of 56.1%. The data
does not show any discrepancies compared to the other two stations. We therefore
conclude that the control program for the testing station is just more susceptible
to IntraFunc CFEs than its distribution station and sorting station counterparts.

Regarding the global results of the fault injection campaign, the figures indi-
cate that the IntraFunc CFEs resulted in a higher SDC ratio than the InterFunc
CFEs for the unprotected control programs. This is due to the hardware error
detection mechanisms present in the LPC 1768. A jump between two different
control program functions is more likely to corrupt the stack or to be a larger
jump, and the hardware error detection mechanisms are implemented to detect
such occasions. This is shown in Fig. 5, as the HD category has a minimum value
of 77.2%. Therefore, of all injected InterFunc CFEs, only 22.8% or less are not
caught by a hardware error detection mechanism and are able to corrupt the
workpiece processing. As shown in the figure, most of these InterFunc CFEs do
corrupt the processing of a workpiece and are thus categorized as SDC. Intra-
Func CFEs on the other hand are smaller jumps and less likely to cause stack
corruption, so less likely to trigger the hardware error detection mechanism and
thus remain undetected. This is shown in Fig. 4 in which the HD category has a
maximum value of 19.7%. This means that 80% of the injected IntraFunc CFEs
remain undetected and potentially be registered as SDC.
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When looking at the protected control programs, RACFED detects most of
the injected CFEs, achieving 60% or higher error detection ratio, and signifi-
cantly reduces the SDC ratio for all stations, as expected. For the distribution
station and the sorting station, the SDC ratio drops below 4% which is within
the design limit of the RACFED technique. As explained in the literature, a
technique will never reach an SDC ratio of 0% for IntraFunc CFEs, as there are
always IntraFunc CFEs that can defeat the technique [22]. To give an exam-
ple, consider again Fig. 2. A CFE originating at address 0x1d4 and landing at
address 0x1dc, skips the program instruction located at 0x1da but does not skip
a control variable update and thus remains undetected. While such InterFunc
CFEs do exist, they are much more rare and thus a fault injection campaign can
report an SDC ratio of 0% for these type of CFEs as is the case for the sorting
station.

The IntraFunc results of the testing station differ from those of the other two
stations. While RACFED detects 72% of the injected CFEs, the SDC ratio is
still 10.5% which is high. Analysis of the data revealed that many of the CFEs
causing SDC exploit the weaknesses of RACFED, such as the type of CFE
mentioned in the previous paragraph. Another reason for the high SDC ratio is
that, due to the memory layout of the program, multiple single-bit bit-flips of the
program counter, result in the program jumping to a wait sequence causing an
indefinite wait in the program. These wait sequences are used to make sure the
mechanical parts are driven for the correct amount of time. When a CFE jumps
to such a wait sequence, the waiting time is not initialized or the mechanical part
is not actually driven, causing an indefinite wait in the program, which is then
categorized as SDC. This shows that, although a CFE detection mechanism is
implemented, CFEs can still have devastating effects on the control program.

5 Drawback of the Created Fault Injection Setup

Using the created HIL-based fault injection, we were able to perform an in-
depth CFE study on the control programs for our small scale factory. This has
revealed that 30% or more of the injected IntraFunc CFEs can corrupt the
execution of these control programs, which is much more than our estimate
from our preliminary study [23].

The numbers presented in this paper are, however, a Worst Case scenario
since any deviation from the normal workpiece processing flow is categorized
as an SDC. This process does not take the inherent error resilience of the sta-
tion control programs into account. As described in Sect. 3.2, the created HIL
simulation sequentially produces the necessary inputs for the target LPC1768
to correctly process one workpiece, independent from the output of the target.
Once all signals to process one workpiece have been produced, no further sig-
nals are produced, regardless of the state of the station control program. In the
actual small scale factory, however, the sensors might produce signals for the
controlling LPC1768 indicating that something went wrong. In turn, the control
program can react to those signals and try to correctly process the workpiece.
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As an example of this inherent error resilience, consider that the testing
station is processing a correct workpiece and that it is in the state put correct
workpiece on airslider, as shown in Fig. 6. If due to a CFE, the ejection
cylinder is not activated, the workpiece will remain on the lift table. Once the
remainder of the code is executed, the station will be in the state wait for
workpiece. Since the workpiece is still on the lift table, the HIL simulation
would classify this behavior as an SDC. In the actual small scale factory, however,
the workpiece detection sensor detects that the workpiece is still on the lift
table and hence sends the signal new workpiece, causing the control program to
process the workpiece correctly. This means that despite the CFE, the workpiece
is processed correctly albeit with a delay. This shows the inherent error resilience
of the control program.

Fig. 6. Flow chart showing the functionality of the testing station.

To have a more realistic simulation of the hardware and to have more realistic
fault injection results, another HIL simulator needs to be created. In this new HIL
simulator, each major part of each stations should be simulated independently
and be reactive to the inputs provided by the target LPC 1768. Where in the
current HIL simulation the HIL LPC 1768 is the master and the target LPC 1768
is the slave, these roles should be reversed in the more realistic HIL setup. The
current HIL setup has as advantage that detecting whether or not the workpiece
was processed correctly is easy. This can now be done by analysing the outputs
of the target LPC 1768 for each step in the sequential providing of the inputs.
In the more realistic and reactive HIL simulation this would be more difficult,
as each simulated part of the station needs to be analysed.

Moreover, such a reactive HIL simulation would allow to test our crude recov-
ery method. As described in our previous work, we implemented a crude recovery
method for each of the stations which, simply put, re-executes a certain part of
the control program depending on when the CFE is detected. With our cur-
rent HIL setup, we could not test this recovery mechanism, but with a more
reactive HIL simulation this becomes possible. We are currently working on the
architecture, hardware selection, etc., for this more reactive HIL simulation.
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6 Future Work

As described in Sect. 3.2, non-valid single-bit bit-flip CFE destination values for
the program counter are filtered from the pool of possible CFEs to inject. Anal-
ysis revealed that 0% to 30% of the single-bit bit-flip values are valid program
counter values, i.e. those single-bit bit-flip values are program counter addresses
valid for the target program. The other 70% to 100% are non-existing for the tar-
get program and CFEs using such values as destination address would be caught
by the hardware error detection mechanisms. Although the injected CFEs result
in silent data corruption, these values reveal that the program counter is not
that sensitive to erroneous bit-flips introduced by external bit-flips.

Therefore, a further study will include bit-flips introduced in the other cpu
registers, which are better known as data flow errors. Using the developed HIL
setup, bit-flips can be injected in the remaining cpu registers to cause data flow
errors risk free. Similarly, the effectiveness of data flow error detection techniques
can be evaluated when applied to a more input/output-driven case study [4,17].
Once known, the best performing data flow error detection technique can be
combined with RACFED to develop a technique that is able to detect both
control flow errors and data flow errors.

7 Conclusions

In this paper, we presented our HIL-based fault injection setup to be able to
inject CFEs into the control programs of our small scale factory without the fear
of braking anything. For our HIL simulation, we selected the NXP LPC 1768 as
hardware platform and developed a HIL control program for each of the three
stations in the small scale factory. This HIL control program sequentially pro-
vides the inputs to the target LPC 1768 to mimic a workpiece being processed
correctly. During this sequential process, the outputs of the target are moni-
tored. At the end, the HIL control program reports back to the fault injection
framework whether or not the target LPC 1768 provided the correct outputs or
not.

Once set up, we used the HIL-based fault injection setup to inject 1000 Intra-
Func and 1000 InterFunc CFEs in each control program function. The results
show that, when no CFE detection is present, up to 58% of the injected CFEs
can result in the corruption of the processing of a workpiece. This means that
due to the CFE, the target LPC 178 produced wrong outputs, which is here
classified as a corruption of processing. To analyse the effect of adding a CFE
detection technique, we implemented the RACFED technique in each of the
control programs and then repeated the fault injection experiments, using 2000
CFEs of each type. Now, a minimum of 60% of the CFEs is detected and the
corruption of processing a workpiece is reduced to less than 4% in most cases.
This clearly shows the increase in resilience due to the CFE detection technique.

However, due to the sequential and nonreactive nature of the created HIL
setup, the numbers shown in this paper represent the Worst Case scenario.



Using Hardware-In-Loop-Based Fault Injection 417

Each deviation of the normal procedure to process a workpiece is classified as
dangerous. In reality, however, some CFEs are handled by the inherent error
resilience of the control program and can result in the correct processing of
the workpiece. Unfortunately, the built HIL simulator does not allow for the
inherent error resilience to be executed. We are currently looking into new ways
to implement a HIL simulator for the small scale factory that is reactive and
does allow for this inherent error resilience to take place.
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Abstract. Several techniques have been developed to experimentally
assess the dependability of computer systems, such as fault injection
and robustness testing. Given the growing complexity of systems, such
approaches often require a large set of experiments to be performed
in order to achieve statistical relevance, thus leading to extremely long
experimental campaigns. Due to recent developments, there are now var-
ious technologies (e.g., multithreading, virtualization) that maximize the
use of computer resources. However, taking advantage of such technolo-
gies to implement a testbed that accelerates the experimental process
is complex and, to the best of our knowledge, no guidelines or exam-
ples are easily accessible. This practical experience report overviews the
attributes and requirements that should be considered when implement-
ing a testbed to accelerate dependability experiments and presents our
experience (in the form of guidelines) on the creation and configuration
of a concrete Linux testbed making use of modern technologies. A case
study on fault injection is presented to demonstrate the testbed. The
ultimate goal is to provide a reflection, guidelines and an example that
may facilitate the work of other researchers.

Keywords: Dependability · Testbed · Fault injection

1 Introduction

Various techniques have been proposed to assist in the development of depend-
able systems, such as robustness testing [16] and fault injection [1]. However,
given the growing complexity of computer systems, such techniques often require
a large set of experiments to be representative and achieve statistical relevance.
This is a time-consuming task and consequently researchers often use heuristics
to minimize the test set, possibly compromising the results obtained.

Due to technological developments, there has been a considerable increase in
computational power. Moreover, various techniques have been developed at the
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hardware-level, such as running multiple threads on a single core, accelerating
the processor for peak loads, and hardware virtualization.

To take advantage of the current computational power and accelerate the
experimental process, as well as reducing hardware costs, several works have
used multithreading to execute experiments simultaneously on a single machine
(e.g., [34,39]). However, besides requiring a completely automated testbed, it
also relies on the premise of non-interference, such as software containment and
performance isolation. In short, executing experiments simultaneously should
not alter the observed behavior/results. In this direction, virtualization tech-
niques have been recurrently used for conducting experiments in the dependabil-
ity domain (e.g., [14]), as they facilitate the experimental process and its automa-
tion, as well as provide software containment (i.e., the misbehavior/failure of a
machine does not influence others). However, performance isolation is not so
trivial, as, by default, running experiments simultaneously will lead to lower
(and inconsistent) individual performance.

As a consequence of all the inherent experimental complexity and current
technological solutions, devising and implementing an experimental testbed to
assess the dependability of software systems is not straightforward. Further-
more, documentation, guidelines, and examples are not usually available, and
thus properly implementing a testbed requires significant effort and expertise to
identify all the relevant attributes, requirements, and implementation solutions.
This frequently leads researchers to develop simplified testbeds focusing on their
specific concerns, often not taking advantage of the computational resources
available or neglecting aspects that may negatively influence their results.

This practical experience report attempts to overcome the aforementioned
limitations, by overviewing the various concerns and requirements of a testbed
for experiment-based dependability research. It focuses on Linux, as it is often
the chosen platform for research and it can also be found in the most varied
applications. Based on our own experience, it provides guidelines on how to cre-
ate, configure, and attain the various testbed attributes. These guidelines focus
on achieving experiment isolation and complete automation so that multiple
experiments can be executed simultaneously without influencing their results.
In short, the goal of this paper is to assist and facilitate other researchers in
properly setting up their experimental testbeds while leveraging their resources
without compromising the results of their experiments. To demonstrate these
concepts, a simple case study on fault injection is presented.

2 Background and Related Work

One of the most common dependability assessment techniques is software testing,
which consists of executing a program with the intent of finding faults [24]. Even
after defining adequate test cases it still requires the execution of a considerable
number of experiments. While in [18] the authors used parallelization to speed
up the testing of a complex system, the fact is that the demand for parallelization
is so relevant that there are even studies on parallelizing test suites [4].
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A variation of testing, robustness testing, attempts to assess to which degree
the program functions correctly in the presence of exceptional (e.g., range,
invalid) inputs [16]. In [21] a case study is presented on the methods used to
achieve automatic regression and robustness testing on the CERN disk storage
system, using GitLab-CI, which uses parallelization. Work in large-scale Euro-
pean projects also used parallelization to accelerate robustness testing [41].

Software aging and rejuvenation techniques try to mitigate the state and
performance degradation over time by restarting an application to a clean inter-
nal state [13]. As this degradation happens over time various works use an
experiment-based approach to accelerate the process [22]. In [32] the authors
use multiprocessing to conduct source-code refactoring, while [8] uses virtual
machines to assess, test, and/or isolate the effects of aging. Although most stud-
ies do not leverage parallelization, it could be used to expedite the process.

Fault injection has recurrently been used to assess the behavior of a system
in the presence of faults [5]. Given the high complexity of modern systems, it
requires a significant number of experiments to cover the most relevant faults.
In [40] the authors explore the use of simultaneous execution for multiple fault
injections while in [39] the impact/validity of running multiple fault injection
experiments simultaneously is assessed. Finally, [3] and [34] propose frameworks
for fault injection that accelerate the process through simultaneous execution.

Dependability benchmarking intends to characterize the dependability of a
system and related measures in the presence of faults in a standardized manner
[15]. In [15] various benchmarks are overviewed which could benefit from running
experiments simultaneously (e.g., automotive control systems, transactional sys-
tems). In [2] the authors evaluate encryption algorithms, that could also take
advantage of executing experiments simultaneously.

While some of the previous works actually parallelized experiments others
simply made use of multithreading. Such techniques, as well as virtualization,
raise some concerns, such as if, and how much, interference exists between exper-
iments [33] and how it affects the results [28].

Existing works often also overlooked the performance independence between
experiments, as they were mainly focused on increasing throughput. Although
some assess the profile of the experiments between sequential/simultaneous exe-
cution (e.g., are the observed failures similar [39]), they do not analyze the
actual results/performance. While increasing throughput is indeed relevant, if
simultaneous execution compromises the experiments then the results may be
invalidated. Although the need for isolation is easy to understand, achieving it is
far more complex. So many factors in modern computers non-deterministically
influence their performance that even identifying all is not trivial. Besides dif-
ferences between Operating Systems (OSs) and distributions, the architecture of
the system also influences the load distribution (e.g., CPUs shared L# caches).

Concerning software isolation, virtualization has become a go-to solution. If
corruption occurs on a given machine, it should not affect the host or other
running applications. However, although it allows setting the resources that can
be used by each Virtual Machine (VM), this does not guarantee performance
isolation (e.g., overprovisioning) [23].



422 J. R. Campos et al.

There are two main types of hypervisors (i.e., Type-I and Type-II ), each with
various solutions with respective advantages and disadvantages. While Type-I
hypervisors may offer better isolation [23] they are mostly focused on enter-
prise solutions and thus usually have a higher cost, alongside limited hardware
compatibility, besides limiting the machine to just using virtualization. More-
over, these are specific applications/solutions that may not meet the needs and
flexibility required by researchers.

It should be noted that perfect isolation cannot ever be completely guaran-
teed without using separated physical machines. Still, using adequate techniques
it is possible to attain decent levels of isolation, ultimately only requiring to
duplicate components that cannot be parallelized (e.g., hard drives). Moreover,
this also allows containing (hardware) experimentation costs to run experiments
simultaneously (an issue raised in [15]) which is a prominent concern in research.

3 Our Drivers

This work was mainly motivated by the need to conduct large sets (i.e., thou-
sands) of fault injection experiments to generate failure data. Such experiments
are time-consuming, but we have access to a dedicated server that has resources
to execute multiple experiments simultaneously. Hence, we went into a search for
the correct approach to set up an adequate experimental testbed, as no examples
or guidelines were yet available. The main drivers for this initiative are:

Containment and Monitoring the main purpose of fault injection is to study
the behavior of the system in the presence of faults, which may easily lead to
corruption. Hence, each experiment should start with a clean version of the
system. Additionally, we also need to monitor the system under test to assess
the impact of the injected faults. Due to the risk of abrupt terminations, it must
be measured/stored every second.

Automation due to the large number of experiments, the process needs to be
as automated as possible to avoid the need for user interaction. It should be
possible to automate the entire experimental setup: prepare/configure the host
machine, execute the experiments (e.g., launch target machine, run fault injec-
tion/workloads, monitor/collect system metrics, detect failures), and terminate
the process (e.g., store/process the collected data, restore configurations).

Simultaneous Execution and Isolation as a dedicated server is available
we want to leverage it to expedite the experimental process by running multiple
experiments simultaneously. However, as it is also intended to assess the impact
of injected faults on the performance of the system, identical experiments should
produce identical results (i.e., the focus is on consistency and not peak perfor-
mance). Moreover, this premise should hold even if multiple experiments are
running simultaneously, within fair use and share of the resources.
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4 Guidelines/Reflections

While the previous drivers are easy to understand, developing a testbed to
achieve them is not straightforward. This section overviews the most relevant
concepts and provides guidelines and reflections on how to develop a fully auto-
mated testbed on Linux. It details how to: i) configure the system to attain
performance isolation; ii) leverage virtualization for software containment; iii)
monitor the experiments in real-time; and iv) automate the process. A high-
level illustration of the approach can be seen in Fig. 1. Briefly, the host contains
a controller that is in charge of handling all the workflow (e.g., isolating and
controlling the experiments/VMs). Then, each VM sets up the required exper-
iment configurations (e.g., shared folders), injects the faults instructed by the
host and executes the workload while monitoring the system.

Fig. 1. Experimental process Fig. 2. Performance isolation process

4.1 Simultaneous Execution and Isolation

Running multiple experiments simultaneously allows taking advantage of modern
computational power. However, for consistency and repeatability, it should not
influence the results of the experiments. Performance isolation is not easy to
attain and ultimately it will never be perfect without having dedicated hardware
or running the experiments sequentially or in separate machines. Still, some
solutions allow achieving decent performance isolation, as discussed next. An
overview of the most relevant steps can be seen in Fig. 2.

By default, when executing experiments simultaneously (e.g., through
threads/processes), the Linux scheduler will distribute tasks across the cores
as it seems best. Hence, to minimize interference/variations each experiment
should be allocated to a fixed set of cores. However, one thing is to limit a pro-
cess to a set of cores and another entirely different is to avoid any other processes
from being scheduled to those cores. Two other concepts should also be taken
into account. First, Non-Uniform Memory Access (NUMA), a computer mem-
ory design where the memory access time depends on its location relative to
the processor (i.e., a processor can access its own local memory faster than non-
local memory) [17]. Thus, the cores dedicated to an experiment should belong
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to the same NUMA node. Second, logical cores of a given physical core share
resources (e.g. L# caches) and should be used for the same experiment to avoid
latency spikes. Hence, each experiment will run in separate physical core(s) (i.e.,
in parallel).

Isolating CPU Cores. To minimize interference the logical cores required for
the experiments should be isolated from the Linux process scheduler. This can
either be done using the isolcpus kernel parameter (a static approach, which will
take effect at boot time) or using cset-shield/cset-(set)(proc) functionalities (a
runtime approach that creates/defines/isolates sets of cores, known as cpusets).
While cset-shield/cset-(set)(proc) is often the recommended approach, as it pro-
vides more control over the isolation, it may not be able to move some processes
already running on the intended cores. Still, both approaches may not be able
to completely prevent kernel-threads from being scheduled to the isolated cores.

The cset-shield program uses a concept of 3 cpusets [36]: i) root : contains all
cores (unshielded); ii) system: contains cores used for system tasks (unshielded);
and iii) user : contains cores used for dedicated tasks (shielded). All userspace
tasks will run in system, while user has nothing unless specifically set. However,
cset-shield is only useful if you want to isolate a single experiment (only one
user cpuset). This way, we need to use cset-set (create, adjust, rename, move
and destroy cpusets) and cset-proc (manage threads and processes) to have finer
control of cpusets. The concept is similar to cset-shield, but various user cpusets
will be created (one for each experiment). Keep in mind that the logical cores
in each cpuset should take into account physical core affinities and NUMA,
otherwise, errors or unwanted variations may occur.

CPU Pinning. After isolating the intended cores, it is necessary to pin specific
tasks/processes to them. Although there are various approaches (e.g., taskset)
when using cset-set it is best to use its counterpart, cset-proc, which allows
running a program on a given cpuset.

Preallocating Memory. Another technique to minimize interference between
experiments is related to memory, which can have a noticeable impact on per-
formance, especially in the case of latency-sensitive applications. Thus, preallo-
cating memory for the experiments and increasing memory page size will help
reducing memory access latencies and increase overall performance. Briefly, pre-
allocation dedicates a contiguous area of memory so that it does not require to
be dynamically allocated when needed. This provides several advantages, such as
guaranteeing that no other process will use that memory, no allocation overhead
exists, and no memory fragmentation occurs [9].

Another improvement concerns the size of system pages. In short, the ker-
nel needs to keep a table containing virtual-to-physical address mapping. Small
pages (e.g., 2 KB) increases the total amount of entries in the index and there-
fore increases the time to look up/manage pages. Hugepages (e.g., 1 GB) means
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that fewer pages will be required, reducing mapping, look-up, and maintenance
overhead. Hugepages can be dynamically allocated during runtime. While most
modern distributions have some high-level functionality that facilitates this if
the system has multiple NUMA nodes some precautions should be taken (e.g.,
define how many, and how, the experiments will be distributed across the NUMA
nodes, and to calculate how many hugepages are required per node).

Limiting CPU Frequencies. Isolating cores, exclusively assigning them to
experiments, and isolating memory, may give the (wrong) idea that it is enough.
Because energy efficiency is nowadays an important factor in the design of CPUs,
cores can be completely turned off temporarily and their running frequency con-
stantly changes depending on several factors (e.g., computational load, temper-
ature). Additionally, specific techniques can also increase the frequency for peak
load performance (e.g., Intel R©Turbo Boost). This represents a challenge to sys-
tematic and repeatable experiments.

The goal is to disable/minimize variations of CPU frequency. While it could
be tempting to set it for maximum speed, this may still be overridden (e.g.,
reaching threshold temperatures). The more reliable way is to set the CPU
frequency to its minimum, as it will not go below it. While this will force the
CPU to work slower, often the focus is on comparison and repeatability and
not on achieving the best performance possible. Thus, a performance penalty is
usually acceptable, as far as it is the same for all experiments.

Minor Optimizations. Although often not as significant, we also considered
other minor optimizations:

– Real-time Kernel: using a real-time kernel may further reduce latency and
improve the predictability of thread scheduling. While this typically requires
recompiling the kernel, low-latency kernels (often available in repositories)
provide good real-time characteristics while keeping reliability [37].

– Process Scheduler Tuning: another approach to reduce latency is to set
the experiment to use a real-time scheduling policy (e.g., SCHED FIFO [29]).

– NOHZ Full: the kernel uses a scheduling-clock that interrupts running appli-
cations to run a scheduler. Linux 3.10 introduced a full tickless mode (NOHZ
full) that disables the scheduling-clock [20].

– Interrupt Request (IRQ) Pinning: IRQs (hardware signals that trigger
kernel interrupts) have an affinity property that specifies which cores can
process them [10]. This may be altered to avoid using the isolated cores.

– Offloading Ready-Copy-Update (RCU) Callbacks: RCU is a lockless
mechanism for mutual exclusion [11]. As a consequence, callbacks are often
queued to be performed afterward. Seemingly, the rcu nocbs kernel parameter
avoids these callbacks on isolated cores [11].

4.2 Using Virtualization

The use of virtualization is becoming a common practice. Besides being able to
simulate machines running on different hardware/OS, it also has become the de
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facto approach to contain experiments (i.e., corruption of a VM does neither
affect other VMs nor the host). Hence, it is a good solution for an automated
testbed for dependability research.

The problem is that although VMs allow defining the guest resources they
do not guarantee performance isolation [23]. Although bare-metal (i.e., Type-
I ) hypervisors may offer better isolation [23] they are not ideal for research
(e.g., are mostly focused on enterprise solutions, limit the machine to just using
virtualization). Additionally, a prerequisite for research is that it must be flexible
and easily scripted. While once again there are various alternatives, QEMU [30]
(using KVM) is likely the most adequate option. Although QEMU may not be
the easiest to get started, it is highly configurable and can be seamlessly scripted.

After creating the necessary cpusets, QEMU can be initialized using the cset-
proc command, specifying which cpuset to use. When pinning VMs to a cpuset
one needs to be sure to leave one logical core for QEMU/system processing.

Concerning the other optimizations previously described, QEMU can be
instructed to use hugepages (after properly allocating them) and which NUMA
node to use (when applicable). Additionally, to improve latency, the VMs can
be run using a real-time process scheduler. Finally, Kernel Same-page Merging
(KSM) (used by the KVM) should also be disabled. While this may provide
some performance improvements it may also introduce unwanted variations.

4.3 Monitorization

A relevant part of experimental research is monitoring the target system.
Although virtualization eases some problems, it also creates new challenges,
such as collecting metrics/logs from the VMs. While in some scenarios it may be
collected during execution and made available at the end of the experiment, for
others (e.g., fault injection, which may abruptly terminate the VM), it should
be continuously provided.

One common approach to monitor the state of a system is through its metrics
(e.g., CPU/memory). This requires that a set of representative metrics (i.e., that
characterize the system) should be chosen and collected. While it is possible
to a priori select the most relevant metrics, this may require re-running the
experiments if they are not adequate. A more generic approach is to monitor as
many relevant metrics as possible (without impairing the system) and analyze
them post-hoc, enabling possible knowledge discovery (e.g., metrics or synergies
that would not have otherwise been inferred).

As a native solution, Linux provides various packages to gather system met-
rics (e.g., sysstat). Still, most report the data in an unstructured format, and var-
ious tools are necessary to monitor the most relevant resources. Concerning free
centralized solutions, while there are some well-known options (e.g., Nagio [25]),
it is not straightforward to access “real-time” metrics (most are guided towards
larger execution times). We adopted Netdata [27], a comprehensive and highly
optimized tool that provides real-time monitoring by default. Still, it is possible
that with specific configurations other solutions may provide similar results.
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4.4 Process Automation

A testbed intended to run large sets of (simultaneous) experiments requires
complete automation. This is often achieved through simple scripting (e.g., Bash)
or programming languages (e.g., Python). However, more complex applications
(e.g., interacting with VMs) may require more specific solutions. Expect [19] is
a Tool Command Language (TCL) program that “talks” to other programs,
characterizing an interaction between user/program. Over the years it has been
ported to various programming languages.

Due to its flexibility, ease-of-use, and scientific packages, Python is one of
the most adequate languages for research. Pexpect (Python’s implementation of
Expect [35]) allows automatically spawning and controlling applications. Mainly,
it is comprised of two methods: expect and sendline. Briefly, sendline can be used
to send commands to the application and the expect method awaits a successful
match with the output given by the command.

5 Case Study

This section presents a case study using a testbed implemented based on the
techniques described in Sect. 4. First, we assess the effectiveness of the various
techniques in achieving isolation. Afterward, the testbed is used to conduct a
fault injection campaign whose goal is to monitor the state (i.e., system metrics)
and behavior (i.e., failure/success) of the system in the presence of faults. Note
that, the case study is intended only to demonstrate the testbed and not to go
into a detailed analysis of the system in the presence of faults.

5.1 Experimental Setup

The experiments were conducted on a PowerEdge R630 with 2 Intel Xeon
E5/2650 CPUs (with a NUMA node each, hence the testbed takes this into
account). The machine has 64 GB of DDR-4 and 2 Samsung 850 Pro 512 GB
SSDs.

For containment/flexibility, the QEMU (with KVM) hypervisor was used.
The guest OS (due to fault injector dependencies) is a 32-bits Ubuntu 12.04.3
with kernel 3.7.10. Single-core VMs with 2 GB of memory were used. The host
runs 64-bits Ubuntu 18.04.02 with the 5.0.0 low-latency kernel.

We automated the experimental process using Python and Pexpect [35]. Sys-
tem metrics were collected from the VMs using Netdata [27]. Sixteen experiments
were run simultaneously (16 was the maximum due to memory constraints).

5.2 Software Implemented Fault Injection (SWIFI)

Software Implemented Fault Injection (SWIFI) is a common technique to assess
the dependability of systems. Briefly, fault injection consists of introducing faults
that emulate realistic residual faults [1]. Due to the complexity of modern sys-
tems, a fault injection campaign may require executing thousands of experiments
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[39]. A fault injection environment usually includes various components [12]: a
controller (which controls the experiment), a fault injector, a fault library/model,
a monitoring system, and a workload to exercise the system.

We used an updated version [42] of a well-known fault injector [6]. It uses
object-code modification to inject bugs into the kernel of a running operating
system. For these experiments 10 simultaneous faults, a number commonly used
in the literature [6], were injected to increase the chance of triggering a fault. The
injected faults range from low-level (e.g., bit-flips, injected in the kernel’s address
space) to high-level (e.g., memory allocation, injected in the kernel text segment)
faults [6]. The latter are the most relevant, which intend to approximate the
assembly-level manifestation of real C-level programming errors. They emulate
assignment faults, control faults, parameter faults, omission faults, and pointer
faults [7,42]. In total, 17 fault types were considered. Please note that not all
injected faults cause faulty behaviors (e.g., bugs inserted on a rarely executed
path will rarely produce an error).

Table 1. Experiments isolation

Legend: {operations average} ({standard deviation})

5.3 Workloads

A workload is needed to exercise the system and study the impact of the injected
faults. As it may influence the behavior of the system (with and without injected
faults) it must be selected considering the technical needs of the system.

In this case study, we used stress-ng to generate the workloads. stress-ng
contains various stressors (e.g., cpu, hdd, matrix ) designed to exercise several
physical subsystems, as well as various kernel interfaces (details can be found
at [38]). The workloads executed for 10 min. Besides exercising the system dur-
ing fault injection it was also used to assess the isolation attained by the vari-
ous techniques. Sixteen experiments were conducted sequentially to establish a
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baseline and simultaneously for each stressor (both isolated/non-isolated). To
assess the influence of other tasks running on the host, another set of experi-
ments was conducted while a workload was running on a separate session.

5.4 Failure Modes

For these experiments, various types of failure were monitored. More precisely,
Crash (OS crashes), Hang (OS hangs), Performance (the performance deviates
more than 5%, to tolerate statistical variances, than the lowest baseline value),
and (Filesystem) Corruption (using Linux fsck functionality).

6 Results

This section provides a brief analysis on the simultaneous execution of experi-
ments and on how/which faults led to failures.

6.1 Assessing Isolation

A summary of the results can be seen in Table 1. The first group are those
where isolation is noticeable and the second where it is not. The metric used for
comparison is bogo operations (a throughput measure) [38]. Although it is not
an accurate benchmarking metric, it allows comparing the performance across
different environments [38].

As can be observed, without isolation all stressors have considerable variation
between sequential and parallelized execution, which is further aggravated when
the host is executing other tasks (e.g., cpu stressor executed 88860, 81347, and
70664 operations respectively). Furthermore, without isolation standard devia-
tions are systematically higher (e.g., the io stressor had a standard deviation
of 187552 for the non-isolated and only 3362 for the isolated environment). On
the other hand, when isolating the experiments it is possible to observe that
all the stressors in the first group (i.e., cpu to zlib) have similar results across
the various environments, regardless of having other tasks being performed on
the host (e.g., cpu stressor executed 38594, 38527, and 38370 operations for the
sequential, parallel, and parallel with host load environments).

As expected, benchmarks that stress components that cannot be parallelized
were affected by running simultaneous experiments (e.g., hdd stressor operations
dropped from 169910 to 105453). Also, when comparing the performance of
sequential experiments between isolated/non-isolated it is possible to observe
that there is a considerable difference (due to limiting the CPU frequency; e.g.,
when run sequentially the cpu stressor executed on average 88860 operations
against 38594 on the non-isolated and isolated environment respectively).

Each set of 16 simultaneous experiments took on average approximately
20 min while sequentially it took approximately 3 h and 45 min.
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Table 2. SWIFI summary

6.2 Failures Distribution

2176 fault injection experiments were conducted, 16 (with 10 simultaneous faults
eaech) for each of the 17 fault types and 8 stressors in stress-ng [38]. A summary
of the outcomes can be seen in Table 2. As shown, different fault types led to
different failures. The experiments were divided into Non-Failing (no failure
occurred), Invalid (a failure occurred immediately after injection and thus is not
representative of a residual fault, as it would have been detected by traditional
validation techniques), and the various types of failures that were observed,
Hang, Crash, and Performance.

Overall, 4% of the experiments resulted in “usable” failures, 5% resulted
in invalid runs, and 91% did not lead to any (detected) failure. By analyzing
the results in detail we could observe that, while some types of faults never
lead to any failure (e.g., inverse, interface), others (e.g., stack, text) quite often
do. Additionally, we could also notice that certain types of faults often cause
immediate failure (e.g., bcopy, stack). Concerning Crash failures, they were in
fact associated with various errors. The most prevalent (although not present in
Table 2 due to space restrictions), was unable to handle kernel NULL pointer,
which was almost always due to injecting TEXT faults. Additionally, all the
tried to execute NX-protected page errors were due to STACK faults. In fact, all
recorded Hang failures were also due to injecting STACK faults. Finally, only 3
experiments presented performance-related failures.

7 Discussion

Using the techniques described in Sect. 4 we created an automated testbed that
could take advantage of the system resources through simultaneous executions
with minimal interference. In short, the results of experiments run without isola-
tion were considerably different (and with higher variations) between sequential
and parallel executions, which worsened when the host was also running other
tasks. However, when isolating the experiments (with the exception of workloads
that depend on components that cannot be parallelized) the results were similar
(and with significantly less variation), regardless of executing the experiments
sequentially or in parallel. Additionally, although fixing the cores frequency to
its minimum led to lower individual throughput compared to the non-isolated
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environment, the target frequency could be profiled to reduce the performance
gap.

This testbed allowed us to quickly execute a (large) set of experiments (i.e.,
2176 experiments took approximately 46 h while executing them sequentially
would have taken 22 days). A brief analysis of the results allowed us to observe
that only a small set of faults led to “useful” failures. An interesting observation
is that simple (emulated) hardware faults (e.g., bitflips in stack) led to various
failures. Although in recent years software-related faults have been identified as
the main cause for outages (hardware faults have become less common), current
technology has made hardware components susceptible to particle-induced errors
[31]. These results suggest that this may become an issue in the future.

The low failure rate is within expected values according to [26] which defines
5% as an acceptable activation rate for representative faults. Still, some improve-
ments can be made, such as selecting better locations to inject. Due to scope
and time restrictions, it was not possible to analyze further why certain faults
are more prone to lead to certain failures.

Although the concepts discussed in this paper are not innovative per se (most
can individually be found online) their combination/integration is not straight-
forward and not well (if at all) documented. These guidelines should also be
considered for a testbed to execute experiments sequentially, as they may also
be influenced by other tasks running on the machine.

8 Conclusion

Due to the growing complexity of computer systems, large sets of time-consuming
experiments are now required to develop dependable systems. Although various
techniques can leverage modern computational power to expedite the experi-
mental process, guidelines and examples on how to do it properly are rare and
thus researchers often develop simplified solutions, neglecting relevant aspects.

This paper provided guidelines to assist other researchers in creating and
configuring a testbed for conducting experiment-based research for the devel-
opment of dependable systems on Linux. It highlights the different challenges
often faced (e.g., isolation, automation) and gives insights into how to overcome
them. Future work includes trying to create/make available a reusable systematic
approach/testbed.
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Abstract. The operator is one of the main sources of vulnerability in command
and control systems; for example, 79% of fatal accidents in aviation are attributed
to “human error.” Following Avizienis et al.’s classification system for faults
human error at operation time can be characterized as the operator’s failure to
deliver services while interacting with the command and control system. How-
ever, little previous work attempts to separate out the many different origins of
faults that set the operator in an error mode. This paper proposes an extension
to the Avizienis et al. taxonomy in order to more fully account for the human
operator, making explicit the faults, error states, and failures that cause operators
to deviate from correct service delivery. Our new taxonomy improves understand-
ing and identification of faults, and provides systematic insight into ways that
human service failures could be avoided or repaired. We present multiple con-
crete examples, from aviation and other domains, of faults affecting operators and
fault-tolerant mechanisms, covering the critical aspects of the operator-side of the
Human-Computer Interaction Loop.

Keywords: Human error · Failures · Human-computer interaction loop

1 Introduction

Command and control systems have many potential sources of faults, one of which is the
human operator. Operators are a primary source of vulnerability in complex systems: for
example, studies have shown that 66% of hull-loss accidents in commercial jet aircrafts
[2] and 74% of fatal accidents in general aviation [1] are attributed to human error.
However, there is relatively little work on categorizing the different types of operator
faults than might contribute to the high frequency of operator errors.

One of the most influential taxonomies of faults was developed by Avizienis and
colleagues [6]. It covers some aspects of the human operator and allows for a variety of
operator faults, but does not provide a full treatment of the human-computer interaction
loop (HCIL). In particular, Avizienis’s taxonomy does not address issues such as envi-
ronmental causes for operator faults (e.g., turbulence that prevents a pilot from pressing
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a button), the different subsystems in a human (perceptual, cognitive, or motor function)
that can cause faults, or the difference between failures within the operator (e.g., not
having adequate muscular control to guide a vehicle) and failures that are caused by
another person (e.g., someone shining a laser pointer into a pilot’s eyes).

Because faults stemming from the operator’s interaction with a complex system are
common and often critical, it is important to better understand the nature and causes of
these faults. In identifying this need, Sheikh Bahaei et al. [3–5] extended previous fault
taxonomies with a focus on addressing the specific issues arising in augmented reality
interaction. More precisely, [3] builds on top of human error taxonomies including
Reason [50], Norman [51] or Rasmussen [52] and provides a human error taxonomy
using feature diagrams from [53]. In this paper, we pursue a more general approach,
expanding on Avizienis’s influential fault taxonomy to better characterize and explain
operator faults, focusing on internal and external events that induce error states inside
the operator. This approach contrasts with that of others – in particular, Avizienis’s
work focused on faults that induce error states inside the system. We build on that
taxonomy (widely used in dependable computing) and integrate an interactive systems
engineering approach with the goal of improving dependable interactive systems.

We add categories in Avizienis’s System boundary dimension to include causes of
operator error that are either internal to the operator or external; we add categories to
the Phenomenological cause dimension to recognize new sources of faults including
environmentally-induced operator faults and faults induced by other people; and we add
a new dimension Human capability to separate out faults that occur in the operator’s
perceptual, cognitive, and motor subsystems. These additions provide 24 types of oper-
ator faults, many of which have not been considered in previous work. Our expansion
provides designers and researchers with new classes of potential faults that cover com-
mon and important real-world phenomena, and that improve understanding of how faults
occur in the human-computer interaction loop. By showing where operator faults can
arise, our work can improve the design of new interactive systems and lead to better
evaluation of existing systems and diagnosis of accidents and incidents. We demonstrate
that the classification makes it possible to position previous work in the field of HCI
addressing fault tolerance, fault prevention, fault removal and fault forecasting.

The paper first provides an introduction to the human-computer interaction loop
and the way operators interact with technological systems. Second, we present our
expanded taxonomy of operator faults and describe the main structures and categories,
with examples from aviation and other task domains. Third, we describe how existing
HCI research fits into our framework, and fourth, we discuss amelioration strategies for
the new fault categories, using the general approaches of fault removal, fault tolerance,
fault prevention, and fault forecasting.

2 The Human-Computer Interaction Loop (HCIL)

The research field of Human-Computer Interaction (HCI) aims to build knowledge about
humans interacting with computing systems. The field covers methods, techniques, and
tools for designing and developing computing systems adapted to their users. Typi-
cal properties that are targeted by HCI research are usability [7], user experience [8],
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accessibility [9], and acceptance [10]. In order to reach these objectives, HCI promotes
iterative user-centered design and development processes [11] that use variable-fidelity
prototyping [33] and continuous feedback from real users [12].

These processes do not necessarily lead to robust computing systems: for example,
cellphones are less dependable than fixed lines [13], but users may accept reduced
dependability if it is accompanied by significant improvements in user experience. In the
area of safety-critical systems, however, dependability cannot be compromised for user
experience and usability, as people’s lives are at stake; in addition, in some domains such
as aviation, certification authorities explicitly require a very high level of dependability
(e.g., the certification specification requirements in [14]).

These requirementsmean that designing interactive systems that are both dependable
and usable implies making informed compromises. Making such compromises is not
an easy task (as demonstrated in [15]) as it requires blending knowledge from several
disciplines like HCI and dependable computing. The following section highlights the
principles behind the engineering of interactive systems, providing a holistic view that
incorporates the human with the computing system.

2.1 The Human-Computer Interaction Loop

Figure 1 presents an architectural view (from left to right) of the operator, the interactive
command and control system, and the underlying system (e.g., an aircraft engine). This
architecture is a simplified version of MIODMIT (Multiple Input and Output Devices
and Multiple Interaction Techniques), a generic architecture for multimodal interactive
systems [26] described in AADL [27]. Following the attribute dimensions of [6] we
highlight (top right of Fig. 1) the hardware and software components, and show how the
human operator interacts with them (thick dotted lines).

Fig. 1. Architecture of interactive systems with operator, hardware, & software components.

As shown in the figure, interaction mainly takes place though the manipulation of
input devices (e.g., keyboard ormouse) and the perception of information from the output
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devices (e.g., a computer screen or speaker). Another channel usually overlooked is the
direct perception by the operator of information produced (usually as a side effect) of
the underlying cyber-physical systems (e.g., noise or vibrations from an aircraft engine
(represented by the lower dotted line in the figure)).

The top left of the Software section of the diagram corresponds to the interaction
technique that uses information from the input devices. Interaction techniques have a
tremendous impact on operator performance. Standard interaction techniques encom-
pass complex mechanisms (e.g. modification of the cursor’s movement on the screen
according to the acceleration of the physical mouse on the desk). This design space is
of prime importance and HCI research has explored multiple possibilities for improving
performance, such as enlarging the target area for selection on touch screens [29] and
providing on-screen widgets to facilitate selection [28].

The right side of the Software section of the architecture corresponds to what is
usually called interactive applications. This is where HCI methods such as task analysis
are needed for building usable application that fit the operators’ work [30].

The left side of Fig. 1 represents the operator’s view. The drawing is based on work
that models the human as an information processor [22], based on previous research
in psychology. In that model, the human is presented as a system composed of three
interconnected processors. The perceptive system senses information from the environ-
ment – primarily the visual, auditory, and tactile systems as these are more common
when interacting with computers. The motor system allows operators to act on the real
world. Target selection (a key interaction mechanism) has been deeply studied [32]; for
example, Fitts’ Law provides a formula for predicting the time needed for an operator
to select a target, based on its size and distance [31]. The cognitive system is in charge
of processing information gathered by the perceptual system, storing that information
in memory, analyzing the information and deciding on actions using the motor system.
The sequential use of these systems (perceptive, cognitive andmotoric) while interacting
with computers is called the Human-Computer Interaction Loop (HCIL).

2.2 The Operator as a Service

If we consider the operator as a service provider to the interactive system (by manipula-
tion of input devices for selecting commands and entering data) and a service consumer
of information presented by means of the output devices, this service might exhibit
failures, i.e., that the delivered service deviates from correct service (as introduced in
[6], section 3.3.1, p. 18). While that paper [6] was focusing on faults that might trigger
service failure on the software and hardware parts of systems, the taxonomy presented
in Sect. 3 will identify faults that might trigger failures in the operator him- or herself
by exploiting the human information processor decomposition.

A key abstraction in the HCIL is that of the match between the variance in the
signal produced by either the user or the system (e.g., the variance in the user’s motor
movements, or the brightness of the output display) and the tolerance for variance in
the receiver of the information (e.g., the size of a target in the interface, or the user’s
visual acuity). If the variance exceeds the tolerance, the operator might enter an error
state. For example, the requirements for correct selection of a button on a touchscreen
are that the variance in the movement of the finger is less than the extents of the button:



438 P. Palanque et al.

if the button is 2 cm in diameter and the user has a 1 cm variance when aiming for the
centre of the button, the button will be selected correctly; if the user has a 3 cm variance
in their aiming motion, errors may arise. This variance element is key in the design of
user interfaces and interaction techniques. If the button is the size of the entire screen,
selection will be faster and the operator will be able to select even in severe turbulence;
however, very little information will be presented, thus reducing the effectiveness and
efficiency of the application. As described in the next section, various elements of the
operator and the external environment can affect both the variance in the signals, and
the tolerance for variance, in an operator-system interaction.

3 Taxonomy of Faults for the HCIL

Our taxonomy of operator faults expands on the framework of Avizienis and colleagues
[6]. We use Avizienis as a foundation due to its widespread use and influence on the
field. Other taxonomies have been introduced (such as Sheikh Bahaei et al.’s taxonomy
of fault taxonomies [3]) that cover various aspects of operator error lacking in previous
frameworks (such as faults that arise from augmented reality interaction [3]); however,
previous work is primarily focused on specific areas rather than general limitations.

We expand theAvizienis framework in four ways. First, we extend the System bound-
ary dimension to recognize that human faults can be induced in the operator from
external causes. Second, we add new levels to the Phenomenological cause dimension
to distinguish between faults arising 1) from the operator, 2) from another person, and
3) from the natural world (including the system itself). Third, we introduce the Human
capability dimension to differentiate faults in the operator’s perceptual, cognitive, and
motor abilities. Fourth,we add specific fault categories that derive from these dimensions.
Figure 2 provides an overview of the taxonomy.

3.1 Changes and Additions to the Fault Dimensions

The Avizienis framework provides several dimensions that characterize faults in terms
of when, where, and how they arise: at the highest levels, they distinguish between
development and operational faults (Phase), faults that are internal or external to the
system (Systemboundary), and faults that are natural or humanmade (Phenomenological
cause). Although this structure allows for a wide range of fault types (including operator
and environmental faults), it does not systematically categorize and describe the ways
in which operator faults can occur.

In particular, the complex interactions between an operator and a system (i.e., the
HCIL) have properties and characteristics that are separate from the operator alone or
the system alone, and the HCIL can lead to many different types of faults that have many
different underlying causes – someofwhich involve the fault being “induced” in the oper-
ator by outside forces. For example, an aircraft’s hard landing may arise from within the
operator (e.g., a pilot’s early-stage Parkinson’s disease that reduces their muscular coor-
dination), from another person (e.g., someone shining a laser pointer into the pilot’s eyes
from the end of the runway), or from effects of the natural world (e.g., air turbulence that
shakes a pilot’s arm as they try to press a button on the instrument panel). Although these
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three faults are very different in terms of implications for design, theywould all be placed
in the same category in the Avizienis framework (i.e., “Operational/External/Human-
made/Non-malicious/Non-deliberate/Accidental” operator faults). To address this gap,
we need to broaden the dimensions that characterize faults. In this paper we focus only
on operational faults (leaving aside the development faults), and expand the dimensions
of System boundary and Phenomenological cause.

Fig. 2. Overview of the taxonomy of faults focusing on the HCI Loop.

We expand the System boundary dimension to add the HCIL as a conceptual location
for faults that should be considered separately from Avizienis et al.’s categories of “in-
ternal to the system” and “external to the system.”We apply the idea of internal/external
to divide HCIL-based faults into those that arise from inside the operator (see Fig. 3)
and those that arise external to the operator (see Fig. 4).

Fig. 3. Focus of the taxonomy on Internal faults (from inside the operator) with examples.

Wenext identify new levels for thePhenomenological causedimension that explicitly
recognize that when an operator is unable to perform task actions correctly, the cause
may be human-made or from the natural world. When the fault is internal, human-made
implies that it is within the operator; when external, human-made implies the action of
another person. We then create a new dimension – Human capability – to characterize
the human processing subsystem where the fault is located (see discussion of the human
information processor in the previous section). The HCIL requires three main kinds of
human ability (perception, cognition, and motor control) and faults in any of these can
lead the operator to reach an error state.
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Fig. 4. Focus of the taxonomy on External faults (from outside the operator) with examples.

Finally, there are several other dimensions that play roles in our characterization
of operator faults. We use theObjective (Malicious, Non-malicious), Intent (Deliberate,
Non-deliberate), and Persistence (Persistent, Transitory) dimensions in a similar fashion
to Avizienis and colleagues; however, the Capability dimension, which classifies faults
as accidental or due to incompetence, focusses on the cause of the fault rather than its
description. For this reason, we decided to leave it outside of our classification.

3.2 Operator Faults Arising Externally (From Outside the Operator)

Operator Faults Induced by the Natural World. This category can only have Non-
malicious and Non-deliberate faults, because the source of these faults is the natural
world, which does not have objectives or intents. There are fault types that affect each of
the three human capabilities (perception, cognition, motor control), and it is important
to note that some types of environmental phenomena may arise from the system itself
rather than fromweather, sunshine, or terrain (e.g., vibrationmay come from an aircraft’s
engines as well as from air turbulence). The main difference between system-based and
non-system induced faults is in the operator’s ability to control the system to reduce the
phenomena (e.g., reduce engine power to reduce vibration); we discuss this further in
Sect. 4 below.

Environment-Induced Perceptual Faults are caused by natural-world phenomena
that reduce the operator’s perception of the system. The primary senses of concern for
interactive systems are sight, hearing, and touch. Example faults in this category include
bright sunlight that “washes out” a display screen, reducing the operator’s ability to see
and interpret visual objects; vibration from air turbulence or a rough road that reduces
both the operator’s visual perception (e.g., tracking a moving object on a vibrating dis-
play) and tactile perception (e.g., receiving vibro-tactile alerts); or a noisy environment
that reduces the operator’s ability to hear alert sounds.

Environment-Induced Cognitive Faults are caused by phenomena that reduce the
operator’s cognitive capabilities – primarily memory and decision-making. Natural phe-
nomena such as loud noises and bright flashing lights are known to cause problems for
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cognitive ability by saturating the brain’s communication channels [34]. In addition,
environmental conditions such as a low-oxygen atmosphere can have severe effects
on cognitive ability, memory [36], and peripheral perception [35]. This demonstrates
that environmental faults may alter operator performance on all three capabilities, but
dividing these into three is relevant as some faults only alter one capability.

Environment-Induced Motor Faults involve natural phenomena that reduce motor
abilities including movement precision, strength, or endurance. For example, air turbu-
lence reduces the accuracy of a pilot’s finger movement toward a touchscreen target;
if the variance in the pilot’s finger movement exceeds the system’s tolerance (as deter-
mined by the size of the target) then failures in selecting targets can occur [23]. Similarly,
reduced temperature can affect muscular control in an operator who needs to carry out
precise hand movements or complex gestures [37].

Operator Faults Induced by Other People. This category involves another person
acting in such a way that the operator’s perceptual, cognitive, or motor abilities are
compromised. Because the source is another human, these faults can vary in terms of
Objective and Intent.

Other-Person-Induced Perceptual Faults are those in which another person’s actions
compromise the operator’s sight, hearing, or touch. Malicious actions include, for exam-
ple, shining a laser pointer into a pilot’s eyes (preventing them from seeing a display
[38]), or making loud noises when an operator needs to hear an auditory signal. The
degree to which the operator’s perception is compromised and the tolerance built into
the HCIL will determine whether or not a failure can occur.

Non-malicious faults in this category can be either Deliberate or Non-deliberate.
Non-deliberate actions are extremely common: these could involve a person inadver-
tently standing in front of the operator (and thus occluding a display screen) or talking
loudly to the operator (and thus preventing them from hearing an auditory signal). Delib-
erate but non-malicious actions in this category are less frequent, but still possible: for
example, a person could stick a post-it note on a display to cover an annoying flash-
ing alert (i.e., deliberately reducing perception of the display) without realizing that the
operator will not perceive future alerts.

Other-Person-Induced Cognitive Faults are those in which another person compro-
mises the operator’s memory or decision-making ability. A Malicious and Deliberate
action here could involve another person interrupting the operator to prevent proper
decision-making. Non-malicious and Non-deliberate actions could include another per-
son providing information to the operator at the exact time when the operator is trying to
memorize something. Other types are less likely: e.g., it is unlikely that someone would
deliberately compromise an operator’s cognitive abilities without malice.

Other-Person-Induced Motor Faults are those in which another person reduces the
operator’s motor control. A Malicious and Deliberate action here could involve another
person bumping the operator’s arm to prevent them from targeting precisely. Non-
malicious and Non-deliberate actions could include another person placing objects on a
desk that get in the operator’s way, or a child pulling on a parent’s armwhile the parent is
trying to drive a car. Alternatively, an operator might Deliberately but Non-maliciously
block another person’s action (by grabbing their arm, for example) if they see that they
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are about to select an incorrect control (a fault would occur if the blocking results in the
triggering of another incorrect control).

3.3 Operator Faults Arising Internally (From Inside the Operator)

This category involves faults that are not induced in the operator by external forces, but
that arise from the operator him- or herself. These can still be categorized in terms of
their effects on the operator’s perception, cognition, and motor abilities.

Operator-Made Faults. Operator-made faults are those inwhich the operators compro-
mise their own perceptual, cognitive, or motor abilities. These faults are most commonly
Non-malicious, although rare cases involving malice are possible. Examples of Opera-
tor-Made Perceptual Faults include Non-malicious actions that are Deliberate (e.g., an
operator not wearing their prescription glasses because of vanity, thereby reducing their
visual acuity) or Non-deliberate (e.g., damaged hearing from listening to loud music).
Malicious actions are rare (e.g., deliberate self-harm of the operator’s eyes or ears).

Examples of Non-malicious Operator-Made Cognitive Faults include Deliberate
actions (e.g., an operator skipping system training because of laziness) and Non-
deliberate actions (e.g., an operator drinking or using drugs on the job, or an operator
forgetting to carry out a trainingmodule). Again, malice is rare in this category (e.g., pur-
posefully choosing to skip training or take a drug to impair cognition). Operator-Made
Motor Faults can be Non-malicious and Deliberate (e.g., an operator wearing gloves
even though they know this reduces their ability to type) or Non-deliberate (e.g., having
long fingernails that reduce touch accuracy on touchscreens). Malicious and Deliber-
ate actions (again rare) could involve self-mutilation of the hands or fingers needed to
operate a system.

Faults in the Operator Induced by the Natural World. The natural world can also
affect the operator’s capabilities through natural processes that are internal to the oper-
ator. Aging, disease, fatigue, and other elements of the human condition can have sub-
stantial effects on perception, cognition, and motor control. As the natural world is
the source of these faults, they are all Non-malicious and Non-deliberate. Examples
of Natural Perceptual Faults include reduction in color perception due to color-vision
deficiency (commonly called color blindness) or reduction in visual acuity because of
age-related presbyopia; reduction in auditory capability is commonly caused by age-
related deafness. Examples of Natural Cognitive Faults include well-known cognitive
biases (e.g., “loss aversion” [39] in which people prefer to avoid losses rather than
achieve equivalent gains) as well as age- or disease-related dementia and memory loss.
Examples of Natural Motor Faults include reduction in touch accuracy due to condi-
tions such as Parkinson’s disease, or reduction in strength due to aging (e.g., the captain
of Ethiopian flight ET302 requested the first officer to “Pull with me”, applying a force
of up to 110 lbs on the control column [49]).

It is important to note that these biases are not separated out in Avizienis et al.’s
classification, even though they are of different types (information overload, lack of
meaning, need for fast action, and decisions about what to remember), are numerous
[41], and have strong safety implications (e.g., attention tunneling in aviation [40]).
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4 Analysis of Gaps for Improving Dependability of the HCIL

The taxonomy presented above introduces new concepts and classes for the domain of
operator faults, and the specific characteristics of many of these categories suggest ways
in which the faults can be avoided, ameliorated, or repaired. In this section we consider
four common mechanisms for improving dependability – fault removal, fault tolerance,
fault prevention, and fault forecasting – and apply them to the taxonomy.

Many of the strategies described in the sections below arise from our basic char-
acterization of interaction between an operator and a system as a communication of
information with certain variance and tolerance (Sect. 2.2). Improvements to depend-
ability can therefore focus on either increasing tolerance or reducing variability. On the
input side, tolerance could be increased by making touchscreen buttons larger and using
a more stable selection action such as a long press instead of a tap; variability could be
reduced by training the operator to brace their hand on the display bezel. For output, the
operator’s visual acuity could be improvedwith corrective lenses, or the size and contrast
of the text in an alert dialog could be increased to improve comprehensibility. While at
the core of HCI discipline, systematically identifying design options with respect to the
faults they address could lead to more dependable interactive systems.

4.1 Fault Prevention

Fault prevention involves preventing the introduction or occurrence of faults. In Avizie-
nis et al., prevention of operational faults is not addressed (even though prevention of
development faults is covered in section 5.1, p. 24). Prevention of operational faults
(inside the operator) can be done by adapting input devices, output devices, interaction
techniques and user interface so that they prevent faults from occurring. On the External
side (Fig. 4) this can be done by removing interference from others, from the system,
and from natural causes. Some solutions are beyond current technology (e.g. preventing
turbulence in aircraft) or may add other problems (e.g., removing the first officer to
reduce distraction would cause more problems when workload increases). On the Inter-
nal side (see Fig. 3), prevention can be accomplished through training (e.g. informing
operators about cognitive biases and techniques for debiasing [44]) or through human
augmentation (e.g. using night-vision goggles, although their use can induce new types
of accidents [43]). As operator behavior is far frompredictable, however, fault prevention
techniques might fail and faults then have to be removed.

4.2 Fault Removal

Fault removal strategies attempt to reduce the number and severity of faults. The
main type of fault removal for the HCIL is “preventive maintenance” which aims to
uncover and remove faults before they cause errors (Avizienis, p. 28). However, different
strategies will be needed in the different main categories of our taxonomy:

• Internal/Operator-made faults arise from actions taken by the operator, and are
therefore best removed through organizational strategies (e.g., better enforcement
of training, increased concern for operator mental health, and better understanding of
conditions in the workplace that could lead operators to act in an unsafe manner).
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• Internal/Natural faults must be removed by addressing the underlying natural cause.
For example, faults caused by limits on ability due to aging or disease can be avoided
both by treating conditions that are treatable (e.g., providing corrective lenses to
operatorswhoneed them) andby accommodating reduced ability by increasing system
tolerances (e.g., using brighter cockpit displays to accommodate the reduced night
vision of an aging pilot population).

• External/Human-made faults involve the actions of other people, and so removal
strategies aremore difficult to prescribe. Regulations that limit access to the operators’
workplace can assist with this category (e.g., not allowing the public near where
operators are working, and ensuring that people who do have access are aware of the
risks of interrupting or disrupting operators).

• External/Natural faults involve natural-world phenomena inducing faults in the opera-
tor. Removal strategies can focus either on reducing the effects of likely phenomena or
on improving the operator’s abilities during the phenomena. For example, the effects
of turbulence could be mitigated by allowing pilots to fly to smoother air (reduc-
ing the phenomenon), or by teaching pilots to brace their hands while reaching for
controls [18] or better control their movements during turbulence (improving opera-
tor abilities). Similarly, strategies could reduce sunlight or loud noise through filters
or through technologies such as noise-cancelling headphones, or could increase the
magnitude of the system’s visual or auditory signals.

4.3 Fault Tolerance

Fault tolerance is the delivery of a correct service despite the occurrence of faults, and has
several elements that are relevant to the HCIL, including error detection, recovery, and
error handling. First, error detection in a human-computer system will often involve the
operator rather than the system – that is, it is often only the operator who can determine
that an input was erroneous. The design of an interactive system can assist the operator
using well-known HCI strategies such as providing sufficient feedback to the operator
to help them detect errors (e.g., mode errors in aircraft automation [42]), or providing
“reasonableness checks” on input.

Second, HCIL-based recovery and error handling (i.e., mechanisms that eliminate
errors from the interactive system state) can be based on the idea that input and output
are a kind of communication between the operator and the system that occurs in a noisy
channel. Telecommunications theory uses the idea of adding redundancy in order to
preserve the signal, and a similar approach can provide fault tolerance in the HCIL. For
example, in an aircraft cockpit where turbulence causes touchscreen errors, the human-
system communication channel could add redundancy through command repetition or
explicit confirmation. As in telecommunications, however, adding redundancy reduces
the throughput of the system, and as a result, operator actions will take longer. Therefore,
an important design principle is that the degree of redundancy should be adaptively
matched to the amount of “noise” in the channel. In the case of turbulence, sun glare,
or ambient sound, this could be accomplished using environmental sensors and models
of the effects of these phenomena on the operator. In the context of interactive cockpits,
self-checking interactive components have been proposed thatmigrate checking from the
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flight crew to a software component – a study of this system showed that dependability
increased without degrading operator throughput [20].

4.4 Fault Forecasting

Predictive models are another type of fault forecasting that is critical to some of the
strategies described above. These models provide a prediction of the likelihood that a
physical phenomenon such as noise, sunlight, or turbulence will affect operator actions
or perception; these predictions are critical because of the possibility of adapting the
system to the magnitude or severity of the current phenomena. In addition, if techniques
such as adding redundancy are used (see Sect. 4.2), models can help avoid situations
where the system asks formore confirmation or repetition than is required by the environ-
mental conditions. As an example, recruitment procedures of operators aim at detecting
operators’ capabilities in order to reduce likelihood of failures [45].

Experimental psychology is also an evolving field and previous knowledge can
be overturned by new studies. For example, Wason [46] describes a study where
a large majority were not able to deduce information correctly (philosophyexperi-
ments.com//wason). A more recent study [47] showed that the abstract nature of the
task was the limiting factor; concrete presentation of the same information removed the
difficulty.

5 Discussion and Conclusion

We analysed our taxonomy in terms of the requirements identified by Hansman [54]:
acceptability, completeness, standard terminology, determinism, mutual exclusiveness,
repeatability, and unambiguity. We meet several of these requirements by using well-
accepted foundations (i.e., the Avizienis framework and the standard HCI model of the
human information processor); this improves acceptability, facilitates completeness
(although further sub-divisions are possible), uses standard terminology that is familiar
to researchers, and provides clear classification structures (determinism). We partially
meet the requirements of mutual exclusiveness, repeatability, and unambiguity: the
divisions in the taxonomy are clearly separated, but because many tasks involve multiple
human capabilities, a phenomenon could affect multiple categories (e.g., turbulence can
affect both perception and motor action); therefore, users of the taxonomy will need
to separately consider effects on different human capabilities. In addition, it is often
difficult to ascertain people’s internal states (i.e., deliberateness and maliciousness may
not be knowable). Finally, the usefulness of the taxonomy is in providing new ways to
think about operator faults, which can lead to better analysis of incidents and improved
designs. However, usefulness must be further determined as the taxonomy is used by
the research and practitioner communities.

Although several taxonomies exist that cover different aspects of operator failures,
these have not comprehensively explored the many ways in which operators fail while
interacting with an interactive human-computer system. We expanded on Avizienis
et al.’s fault taxonomy [6] to better characterize and explain operator faults, focus-
ing on internal and external faults that induce error states inside the operator. Our new
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taxonomy explicitly recognizes that operators can be induced into error states, and sep-
arates out faults in the operator’s perceptual, cognitive, and motor subsystems. These
additions provided 24 types of operator faults that expand on the coverage of previous
taxonomies. The framework highlights the fact that the some research contributions are
able to address one type of fault (e.g., stabilizing touch interaction by bracing the hand
on the display [48]) while triggering another type of fault (e.g., bracing with the hand
on the display may cause other faults if the hand occludes the display content).

Our work provides new opportunities for future research. First, we will refine and
validate the taxonomy by classifying existing incidents in consultation with domain
experts andpractitioners. Second,wewill developnewadaptive fault-removal techniques
for different environmental conditions such as ambient noise, vibration, and glare. Third,
we will look more deeply into some of the fault categories by developing formal models
of the operator’s actions in the HCIL, and will further develop the idea of human-
system interaction as communication in a noisy channel that can be improved through
redundancy. Overall, our new taxonomy provides researchers and designers with a broad
understanding of how and where operator faults can arise, and can improve the design of
new interactive systems in complex environments. Our classification is able to integrate
previous work in multiple domains such as medicine, psychology, and HCI, all of which
contribute to the dependability of interactive systems.
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