
Engineering of Runtime Safety Monitors
for Cyber-Physical Systems with Digital

Dependability Identities

Jan Reich1(B), Daniel Schneider1, Ioannis Sorokos1, Yiannis Papadopoulos2,
Tim Kelly3, Ran Wei3, Eric Armengaud4, and Cem Kaypmaz5

1 Fraunhofer IESE, Kaiserslautern, Germany
{jan.reich,daniel.schneider,ioannis.sorokos}@iese.fraunhofer.de

2 University of Hull, Kingston upon Hull, UK
y.i.papadopoulos@hull.ac.uk

3 University of York, York, UK
{tim.kelly,ran.wei}@york.ac.uk

4 AVL List GmbH, Graz, Austria
eric.armengaud@avl.com
5 AVL Turkey, Istanbul, Turkey
cem.kaypmaz@avl.com

Abstract. Cyber-Physical Systems (CPS) harbor the enormous potential for soci-
etal improvement in terms of safety, comfort and economic efficiency. However,
these benefits will only be unlocked if the safety of these systems can be assured
with a sufficient level of confidence. Traditional safety engineering and assurance
approaches alone cannot address the CPS-inherent uncertainties and unknowns
induced by openness and adaptivity. Runtime safety assurance approaches such
as Conditional Safety Certificates (ConSerts) represent novel means to cope with
CPS assurance challenges by introducing modular and formalized safety argu-
ments with variant support, thereby shifting the final safety certification step to
runtime.However, the systematic engineering of ConSerts at design-time is a com-
plex taskwhich, up to now, has not been sufficiently addressed.Without systematic
safety assurance at both design-time and runtime, CPS will hardly be assurable
with acceptable confidence given the uncertainties and unknowns. In this paper,
we present an engineering method for synthesizing ConSerts based on Digital
Dependability Identities (DDI). The approach is demonstrated for a cooperative
vehicle platooning function (CACC) from an industrial case study.

Keywords: Dynamic risk management · Runtime certification · Runtime safety
monitor ·Model-based safety engineering

1 Introduction

CPS Safety. Cooperative Cyber-Physical Systems (CPS) harbor enormous potential for
societal improvement in terms of safety, comfort and economic efficiency.However, CPS

© Springer Nature Switzerland AG 2020
A. Casimiro et al. (Eds.): SAFECOMP 2020, LNCS 12234, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-54549-9_1

4 J. Reich et al.

functions will only be accepted by society if their safety is confidently assured. Justified
belief that systems are free from posing an unacceptable risk to their environment must
be created. Therefore, we need a safety argument, conveying a convincing story about
why evidence, in the form of safety analyses, designmeasures and verification/validation
results, supports the safety claim.

CPS Safety-related Uncertainties and Unknowns. Traditional safety assur-
ance approaches, e.g. the automotive functional safety standard ISO 26262, assume
that the complete set of evidence for supporting the safety claim can be generated at
design-time. The CPS-inherent characteristics of openness and adaptivity pose a signifi-
cant problem for traditional approaches because the amount of safety-relevant CPS con-
text changes can hardly be anticipated completely at development time. These changes
include CPS capability changes, triggered by e.g. sensor failure or changing cooperation
partner capabilities, and environmental changes, such as vision range restriction or road
friction changes due to weather. Thus, CPS complexity renders safety certification at
development time with acceptable performance much harder.

Safety@Runtime. Runtime safety assurance approaches such as Conditional Safety
Certificates (ConSerts) [1] represent novel means to cope with the CPS assurance chal-
lenges by shifting parts of the safety assurance process to the runtime, when all relevant
uncertainties and unknowns can be resolved. Specifically, ConSerts allow the defini-
tion of modular safety concepts describing CPS cooperation variants. By making the
guaranteed and demanded safety interface to other CPS systems and the environment
explicit, these modular safety concepts are certifiable at design-time. At runtime, CPS
constituents resolve those open ends by checking the compatibility of the safety interface
and by monitoring runtime evidence required for safe operation.

Problem. ConSerts rely on solid design-time safety engineering and only shift the min-
imum necessary safety activities to runtime, i.e. safety interface matching and runtime
evidence monitoring. Only limited research has yet examined this design-time engineer-
ing backbone; requirements for a concrete ConSerts-based engineering method remain
an open research topic. Key aspects of such a method are a) a comprehensive assurance
argument combining development time safety assurance with runtime safety assurance
and b) a systematic design of ConSerts out of established development time safety
artifacts.

Solution. Digital Dependability Identities (DDI) are an overarching solution framework
for engineering dependable CPS, developed in the H2020 DEIS project. In this paper,
we demonstrate the application of the DDI framework for an industrial case study of
a cooperative platooning function, specifically focusing on the transition from design-
time safety models (Design-time DDIs) to runtime safety models (ConSerts, which serve
as Runtime DDIs). To that end, in Sect. 2, we introduce the overall idea of the DDI
engineering framework for design-time and runtime DDIs. In Sect. 3, the framework is
applied and discussed for a CPS-based platooning function. Section 4 discusses related
work and Sect. 5 concludes the paper’s scientific contribution.

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 5

2 Runtime DDI Engineering Approach Overview

This section introduces the DDI engineering approach for seamless dependability engi-
neering of CPS functions by creating design-time DDIs and transforming them into
runtime DDIs that are used to dynamically assure CPS safety at runtime.

2.1 What Are Digital Dependability Identities (DDI)?

DDI Definition. Afundamental problemof current dependability engineeringprocesses
hampering effective assurance lies in the fact that safety argument models are not for-
mally related to the evidencemodels supporting the claim. Such evidencemodels include
hazard and safety analysis models and dependability process execution documentation.
As such artifacts refer to the same system and therefore are naturally interrelated with
each other, we claim this should also be the case for the system’s model-based reflec-
tion: The Digital Dependability Identity (DDI) [2]. By establishing this kind of trace-
ability, DDIs represent an integrated set of dependability data models (i.e. evidence),
generated by engineers and reasoned upon in dependability arguments (i.e. how are
claims supported by evidence). A DDI is, therefore, an evolution of classical modular
dependability assurance models, allowing for comprehensive dependability reasoning
by formally integrating several separately defined dependability aspect models. DDIs
are produced during design, certified on system/component release, and then maintained
over the system/component lifetime.

DDI Contents. A DDI contains information that uniquely describes the dependability
characteristics of a system or component. DDIs are formed as modular assurance cases,
are composable and can be synthesized to create more complex DDIs from the DDIs of
constituent systems and system components. The DDI of a system contains a) claims
about the dependability guarantees given by a system to other systems b) supporting
evidence for the claims in the form of various models and analyses and c) demands from
other connected systems being necessary to support the claims.

Previous Work on DDIs. In the first phase of the DEIS project, the focus has been to
integrate various state-of-the-art design-time safety and security engineering aspects
together into an exchange format, the Open Dependability Exchange Meta-Model
(ODE), used as the blueprint for DDIs. Accompanying engineering methods and
tools have been developed to enable distributed dependability engineering in multi-
tier integrator-supplier scenarios [3]. In [4], we showed, for an industrial railway use
case, how to use design-time DDIs to automatically verify safety requirements with
component fault trees and model-based evidence lifecycle documentation.

Runtime DDIs. To cope with the openness and adaptivity CPS challenges safely, sys-
tems can be engineered in a way that enables them to assure dependability at runtime on
their own. Consequently, runtime DDIs need to be developed with appropriate model
contents and runtime mechanisms to enable dependable integration and cooperation at
runtime. The upcoming sections take the approach outlined in [4] to engineer design-
time DDIs as a basis and add on top the aspect of how to address openess and adaptivity

6 J. Reich et al.

challenges. Therefore, the specific content additions of runtime DDIs are explained,
exemplified for a cooperative platooning application and a process for their systematic
derivation is proposed.

2.2 Runtime DDI Engineering Approach

Being equipped with knowledge about high-level DDI contents, this section describes
from a bird’s eye view, how the DDI Dependability Engineering Framework bridges
the gap between a CPS use case description and its dependable operation at runtime.
Figure 1 visualizes the principal building blocks of CPS dependability assurance.

CPS
Use Case

DDI Dependability Engineering Framework

Design Time DDI Run me DDI

Dependability
Assurance
Argument

Model-based
Evidence

Dependability
Claim

CondiƟonal
Dependability

CerƟficate

RunƟme
Evidence
Monitor

RT
DDI

Dynamic CPS Safety
Assurance @Run me

RT
DDI

Fig. 1. DDI dependability engineering framework overview.

CPS Functionality. The starting point for all dependability assurance activities is the
description andplanningof the functionality that theCPS shall render for its stakeholders,
which may be either direct system users, companies or even the society. An essential
property of a CPS function is that it is executed on multiple independent systems leading
to a required distribution of dependability assurance overmultiple systemmanufacturers.
For example, a platooning CPS function is executed on multiple trucks of potentially
different manufacturers. Enabling cooperative function execution while still allowing
decoupled development is only possible by making development and runtime execution
interfaces explicit for both functional and quality aspects. Concretely, structural and
behavioral aspects of the intendedCPS functionmust bemade explicit alongwith assured
constraints regarding their quality bounds.

Dependability Claim. DDIs are concerned with the comprehensive and transparent
assurance of dependability claims. Each assurance activity and each artifact contained in
aDDI ismotivated by a root dependability claim defining risk reduction for a dependabil-
ity property such as safety, security, availability or reliability. The definition of acceptable
risk reduction is typically derived from domain-specific risk management standards tar-
geting different risk causes such as functional safety causes (e.g. ISO 26262), causes
related to functional insufficiencies and foreseeable misuse (e.g. SOTIF PAS 21448)
or causes due to cyber-security threats (e.g. ISO/SAE 21434). These standards contain

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 7

requirements for assessing risk criticality and reducing risks to an acceptable level. Note
that existing standards do not specifically consider CPS challenges as of now. However,
the DDI framework has been defined generally enough to be open for structured exten-
sion with contents from future risk management standards specific for CPS assurance
challenges.

Design-Time Dependability Assurance. Having a dependability claim to be assured for
theCPS function, riskmanagement activitiesmust then be systematically planned. These
activities create necessary evidence for supporting the system engineers’ reasoning that
the dependability claim holds for the developed system/CPS. For both risk manage-
ment planning and dependability assessment purposes, an explicit argument inductively
relates created evidence to the top-level claim through layers of argumentation. While
the performed activities and produced artifacts vary depending on the kind of risk that is
being managed, argumentation supported by evidence is mandatory for all risks. DDIs
deal with dependability risks, thus the currently supported design-time DDI assurance
activities and evidence focus on well-established dependability methods such as haz-
ard and risk analysis, safety and security analyses, safety design concepts, validation,
and verification. These activities are effective in demonstrating dependability of closed
embedded systems, unrelated to the CPS challenges. In addition, reliance on model-
based approaches already compensates for the increasing complexity of closed systems.
Thus, we believe model-based development is also necessary for assuring CPS.

Runtime Dependability Assurance. The open and adaptive nature of CPS, combined
with their increased need for environmental operational awareness to render optimal
functionality, increases their complexity tremendously. To assure with sufficient con-
fidence that CPS behavior is dependable in all situations, dependability assessment of
those situations is mandatory. A common way to simplify this process is to build the
system using worst-case assumptions about the environment, specific for the managed
risk. Thus, we only look at the most critical situations and constrain system behavior
to be dependable in those situations. The problem with this strategy is that worst-case
assumptions lead to performance loss. An alternative to unacceptable performance due to
design-time worst-case assumptions is to enable the CPS to reason about dependability
at runtime. This alternative involves determining the worst case of the current opera-
tional situation instead of acting according to the worst case of all possible situations.
This approach avoids the commonly known state-space explosion problem but demands
engineering dependability intelligence into the CPS. Such dependability intelligence
builds upon the design-time assurance case by equipping a system with pre-certified
knowledge about dependability guarantees it can offer and dependability demands it
needs from other systems or the environment to render those guarantees. Additionally,
the dependability intelligence needs to monitor both CPS and environment for changes
(Runtime Evidences) that affect dependability. Based on such changes, it can reason
about possible CPS configurations leading to dependable CPS behavior in different sit-
uations. Summarizing, runtime DDIs are a reduced form of pre-certified design-time
dependability assurance cases, containing only those dependability artifacts and rea-
soning intelligence required for monitoring dependability-relevant context changes and
reacting to them in a dependable way.

8 J. Reich et al.

Runtime DDI Engineering. Regarding the engineering of concrete runtime DDIs, the
DEIS consortium focuses on the usage of Conditional Safety Certificates (ConSerts) [1]
for expressing modular, variable and fully formalized safety concepts including required
runtime evidences enabling safety guarantee-demand matching and thus a basic form
of dependability reasoning at runtime. For monitoring CPS state and environment, the
consortium explored state-based probabilistic methods such as Bayesian Networks [5].
In Sect. 3, we focus on explaining concretely for the platooning use case, how its design-
time DDI looks like and how the ConSert part of runtime DDIs is systematically synthe-
sized. Note that although Sect. 3 demonstrates the usage of DDIs for assuring a safety
claim, the overall engineering procedure is similar for other dependability properties.

3 Runtime DDI Engineering for Platooning

This section exemplifies the runtime DDI engineering activities and artifacts needed to
fulfill the safety claim for a platooning function executed on a CPS.

3.1 Platooning Use Case Description

Function and Constraints. The goal of truck platooning or more general cooperative
adaptive cruise control (CACC) is to reduce fuel consumption of all involved vehicles by
maintaining reduced air drag at small inter-vehicular distances. Platooning is particularly
relevant for heavy-duty trucks due to their high air resistance area and thus hold high
potential for fuel economy. Since humans have limited reaction capabilities compared
to automated systems, they cannot safely drive at distances where air drag is reduced
through slipstream.The example in this paper is limited to automated longitudinal control
of a two-vehicle platoon. The platoon’s leader truck is assumed to be driven by a human
and the follower truck’s longitudinal motion is controlled by the platooning system,
which is executed in a distributed CPS fashion on both vehicles.

Safe Nominal Behavior. For human-driven vehicles or ADAS, it is often the correct
realization of the driver’s intent that defines safe behavior for control software. For
highly and fully automated systems, this is more complex due to many aspects of the
environment that have to be considered in the safe nominal behavior specification. The
currently most comprehensive safe nominal behavior definition for highly automated
vehicles has been published by Intel/Mobileye in 2017 coined Responsibility Sensitive
Safety (RSS) [6]. In this paper, we use the RSS formalization of a longitudinal safe
distance as safe nominal behavior definition (see Eq. (1)).

dsafe =
[
vFρ + 1

2
amax,acc,Fρ2 +

(
vF + ρamax,acc,F

)2
2amin,brake,F

− v2L
2amax,brake,L

]
+

(1)

Effectively, the first three terms together represent the stopping distance of the follower
vehicle considering a) a reaction distance (vF : follower speed, ρ: reaction time), b)
an acceleration distance if the follower constantly accelerates with amax,acc,F during

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 9

reaction time and c) the follower braking distance, when the follower constantly brakes
with deceleration amin,brake,F . To compute the safe distance, we subtract the leader
braking distance with leader speed vL and constant leader deceleration amax,brake,L from
the follower stop distance. Note that the leader vehicle driver’s reaction time is not
factored in, because, in this time span, the motion state of the platoon does not change
and is therefore irrelevant for safety assurance.

Influences on Safe Distance. By looking at Eq. (1), we observe that the safe distance
is dynamic, as it depends on the right-hand-side variables. Within the platoon context,
such changes can either be triggered in the environment, e.g. road surface conditionsmay
affect theminimum andmaximumdeceleration capabilities of both trucks. Alternatively,
theWi-Fi communication quality is affected by weather conditions such as precipitation
influencing follower reaction time. In contrast, the safe distancemay be affected by CPS-
internal states such as vehicle mass (very dynamic specifically for trucks) or quality of
vehicle speed determination. In summary, the CPS function description together with a
safe nominal behavior specification provide sufficient information to start DDI-driven
safety assurance.

3.2 Design-Time Safety Engineering with DDIs

This section describes how a platooning system safety assurance case is synthesized for
the platooning function and finally captured in a design-time DDI.

CPS Safety. The design-time DDI depicted in Fig. 2 by definition contains a top-level
safety claim, for which a safety assurance argument is developed. The argument asso-
ciates all safety-related activities and their evidence with each other to create justified
belief in the validity of the safety claim. Since safety is a system property, the design-
time DDI necessarily spans the whole collaboration space on which the CPS function is
executed (i.e. leader and follower roles). Note that we refer to roles instead of systems
here to highlight the fact that at this point, we are dealing with functional entities and not
with concrete constituent systems realizing these functional entities. Conceptually, one
truck can have the main responsibility for achieving safety in the end, but the top-level
safety claim has to be necessarily defined and analyzed for the entire CPS. To illustrate
this point, we note that the inter-truck distance as the main safety property to be assured
cannot be interpreted for a single truck alone. Rather, a distance can only be defined
between multiple objects and therefore is necessarily a property of the object group or
in the platooning context, the whole platoon. The goal of CPS safety engineering is thus
to decompose a CPS safety claim into a set of safety requirements for each cooperation
role that allows the cooperative fulfillment of the safety claim.

Hazard and Risk Assessment (HARA). Following theRSSdefinition of a safe distance,
the CPS state that poses safety risk (hazard) is existent if the actual distance is lower than
the safe distance. This observation is straight-forward for the hazard in a longitudinal
direction. In general, a more systematic hazard and risk assessment (HARA) should be
performed for all potentialCPSbehaviors in the intendedoperational environment.Given
a safe nominal behavior specification, conventional HARA methods are applicable for

10 J. Reich et al.

CPS. For determining the worst-case criticality of the hazard in all situations, we adopt
the ASIL classification from ISO 26262, which yields an ASIL D criticality. Thus, the
platoon’s safety goal is specified as “Safe Truck Distance is not violated during platoon
driving (ASIL D)”.

Functional Architecture. After HARA, functional cause-effect relationships that lead
to a violation of the safety goal must be analyzed. To obtain sufficient completeness
regarding potential violation causes, requires systematic safety analysis using a func-
tional network linking functional blocks and their cause-effect relations. Conventionally,
functional models contain data and information flow connectors between sensing, con-
trol and actuation functions. In [7], an approach for the service-oriented definition of
cause-effect relationships has been presented, which better supports the derivation of
modular failure mode interfaces than purely dataflow-oriented models. As we will see,
modularity is a necessary property for the derivation of runtimeDDIs. Therefore, service-
oriented functional networks (e.g. expressed in languages such as SysML) are a suitable
basis for CPS safety analysis. The application service of a platoon is “Safe Platoon
Driving with defined performance”, which uses actuation services like “Truck Distance
Realization” or functional services such as “Follower Brake Distance Computation”,
which use sensing services such as “Follower Speed Provision”.

Platooning
Use Case

Design Time DDI

Model-Based Risk Reduc on Evidence

Safety Assurance Argument (SACM)

Hazard & Risk
Assessment

Claim Platooning System is sufficiently safe.

Safety
Analysis

FuncƟonal
Architecture

Safety
Concept

HARA Model
FuncƟonal
Net (e.g.
SysML)

Service-
oriented

CFT

SACM
Model

Fig. 2. Contents of a design-time DDI.

Safety Analysis. Starting from a CPS-level hazard, causes leading to this hazard should
be systematically identified deductively or inductively. There are several different types
of causes to be analyzed, e.g. causes related to a) systematic software faults and random
hardware failures, b) functional insufficiencies or foreseeable misuse or c) malicious
cyber-security threats. For each cause type, there are specific analysis techniques, e.g.
fault trees, failure mode and effect analysis (FMEA), Markov chains or Systems The-
oretic Process Analysis (STPA). For platooning safety analysis, we used an extension
of component fault trees coined Service-Oriented Component Fault Trees (SCFT) [8].
Unlike dataflow-oriented deductive safety analyses starting at the actuators, SCFT anal-
ysis starts at the entity with the application context knowledge enabling a derivation of
modular interface failure modes. SCFTs build on a stepwise deductive HAZOP guide-
word interpretation for functional service hierarchies. Example failure modes for a first

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 11

analysis step in the context of the platooning safety goal are “Too Low Computed {reac-
tion, acceleration, braking} Distance” as these can lead to a violation of the safety
goal.

Safety Goal Safe Truck
distance is not violated

during Platooning (ASIL D)

Context Safe Truck
Distance definiƟon

according to RSS

Req0 All relevant
failure modes have

been idenƟfied.

Process
SCFT

Analysis

Req1 Too Low
Follower ReacƟon
Distance shall

be avoided (ASIL D).

Assump on
Assumed worst-cases

are valid for opera-
Ɵonal context

Context DefiniƟon
of Platooning

FuncƟon + Op.
Context

Strategy Argument over
constraining influence parameter
failure modes either worst-case
or measure them with integrity.

Req2 Too Low Follower
AcceleraƟon Distance12 , , 2 shall be

avoided (ASIL D).

Req3 Too Low Follower
Brake Distance+ , , 22 , , shall

be avoided (ASIL D).

Req4 Too High Leader
Brake Distance22 , , shall be

avoided (ASIL D).

Concept Leader
Speed Integrity

Monitor

Concept
Follower Speed

Integrity
Monitor

Concept, ,
WC Assump.

Concept
ReacƟon Time

WC Assump.
Concept, ,

WC Assump.

Concept, ,
WC Assump.

Evidence
SCFT

Model

Evidence
FuncƟonal

Net

Req5 Too Low realized
Truck Distance shall be

avoided (ASIL D)

Concept Distance
RealizaƟon Error

WC Assump.

Fig. 3. Platooning functional safety concept.

Safety Concept. After the identification of all functional failure modes, the next step
is the creation of a functional safety concept mitigating the propagation from causes to
safety goal violation. Figure 3 presents the safety concept documented in an adapted
notation based on the Goal Structuring Notation (GSN) [9]. In general, a safety concept
provides the rationale for safety measures (depicted as Concepts), which add additional
design elements formitigating critical failuremodes, i.e. lowering their occurrence prob-
ability by failure detection and appropriate transition to a safe state. Note that theConcept
elements are placeholders for safety argument fragments arguing the requirement sat-
isfaction either through the appropriate choice of worst-case assumptions or dynamic
monitoring of measurement integrity. The integrity of safety measure implementation is
dependent on the risk criticality of the hazardous event, which originates from theHARA
(in our case ASIL D). The safety concept should give a comprehensive argument along
with evidence about why a safety goal cannot be violated given the chosen safety mea-
sures. In the DDI engineering approach, this evidence is explicit by linking all artifacts
such as functional net, the SCFT model along with its analysis results, the definition of
the safe nominal behavior and the operational context to the assurance claims they should
fulfill (e.g. Req0). Together with the evidence artifacts, the safety concept is expressed
in a comprehensive safety case representing the design-time DDI’s backbone. The DDI
formalism for expressing assurance cases is the Structured Assurance Case Metamodel

12 J. Reich et al.

(SACM) [10], which is a successor of GSN and has been recently standardized by the
Object Management Group (OMG).

CPS Hazard Mitigation Strategies. To derive concrete safety measures to adequately
mitigate platooning failure modes (see requirements Req1–Req5 in Fig. 3) there are two
potential strategies: On the one hand, we can postulate and use worst-case assumptions,
which must be valid for the intended operational context. For instance, if we assume
the maximum leader deceleration to be bound by 9,81 m/s2 (=1 g), we have to provide
an additional argument that justifies the assumption’s validity, e.g. through physics rea-
soning. Worst-case assumptions are a classical means to simplify safety assurance at
the cost of under-performance in non-worst cases. For instance, we can consider the
larger-than-necessary controlled truck distance for the majority of operation time the
lead driver does not perform emergency braking. On the other hand, we can monitor
the variables of interest at runtime to replace the worst-case value with the actual run-
time value (see Fig. 4, left). For instance, a common established measure in vehicles is
speed integrity monitoring. In order to use runtime monitors safely, we have to design
them with the same integrity as the hazard they should mitigate. This means, that an
assurance argument has to be developed for the correct provision of a “situation-specific
worst-case speed value bound”, which effectively means that the speed provision error is
constrained by employing adequate redundancymechanisms developedwith appropriate
safety processes.

In summary, this section led through the systematic engineering of a design-time
DDI for the platooning function leading to a justified functional safety concept. The
next step is to modularize and abstract this safety concept into runtime DDIs that can be
deployed to concrete trucks, enabling dynamic safety assurance for a platoon.

3.3 Runtime Safety Model Derivation

In this section, CPS assurance challenges and potential solutions principles are presented
first. Afterward, the design-time DDI of the CPS-based platooning function is system-
atically transformed into ConSerts, which build the fundamental basis of a runtime DDI
suitable for dynamic safety assurance of a CPS at runtime.

CPS Assurance Challenges. The major challenge of safety assurance of CPS func-
tionality is complexity. More specifically, this comparative increase in complexity stems
from twoCPS-inherent characteristics: open context and adaptivity.Open contextmeans
that CPS constituent systems are typically developed independently, but should, in the
end, provide a common functionality at runtime. Thus, the concrete nature of potential
cooperation partners is intentionally left open for the sake of flexibility. In contrast, adap-
tivity means that CPS need to adapt themselves to changing context conditions safely.
Although adaptivity was already required for partly automated systems, the amount
of required situational awareness has tremendously increased for fully automated CPS
functionality. For safety assurance, both open context and adaptivity are hard problems,
because safety as a property of the entire CPS system group needs to be decomposed
onto independently developed constituent systems, which finally need to collaboratively
adapt safely to changing context.

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 13

Open Context Solution. Complexity is not a newphenomenon in the domain of systems
and software engineering: A proven solution principle for tackling system-level com-
plexity is Divide-and-Conquer (D&C). The idea behind D&C is to iteratively identify
a service interface and decompose the solution across its boundary. If such an interface
exists, both user and provider of the interface can be developed independently, thereby
promoting design-timemodularity and runtime compatibility.To apply D&C to the CPS’
open context, we need an explicit and semantically complete interface definition a) for
functionality aka services being provided or required at that interface and b) for safety
guarantees and demands associated to the service interface. In Fig. 3, the mentioned
service and safety interfaces emerge immediately as the Concepts are deployed to our
envisioned systems Leader Truck and Follower Truck (see Fig. 4, right). The deploy-
ment of safety measures is a critical decision with impact, as it determines a) the system
role that is finally responsible for achieving the CPS safety at runtime and b) the safety
guarantee/demand interface required between trucks, which is directly related to the
effort for defining the interface. We found in past projects that minimizing the number
of required services and associated safety demands is a good rule of thumb for deploy-
ment. In our platoon, the follower truck gets the overall safety responsibility, mainly
because it is the only vehicle that can transition the platoon to a safe state in case the
communication link is down. We cannot rely on the leader truck’s human driver in this
regard. In contrast, the leader truck can provide the leader’s current speed with much
better quality from its internal sensors than measuring it remotely in the follower. In
summary, by employing the D&C principle on the design-time DDI, safety concepts
can be modularized by deploying the safety measures to the CPS cooperation roles to
be implemented by specific systems.

Fig. 4. Left: platoon variant analysis, Right: modular platoon safety concept.

14 J. Reich et al.

Context Adaptivity Solution. Cooperation-partner diversity and context-dependent
optimal performance necessitates context adaptivity. For instance, different truckmodels
from different brands may have different functional capabilities for sensing and actu-
ating with different safety guarantees for these capabilities. Further, CPS must adapt
to changing risk levels as the environment changes. Different risks lead to situation-
dependent safety requirements and situation-dependent optimization potential. Without
context adaptivity, there would be exactly one possibility to cooperate safely. Regard-
ing the environment, this would need to be the set of worst-case conditions for all
properties, while for the truck interface exactly one configuration of leader capabilities
would be allowed by the follower. Therefore, variants need to be factored into both
service/safety interface and safety concept that a) increase chances of interface compat-
ibility and b) enable situation-dependent optimal performance while still maintaining
safety. Two types of variants are depicted in Fig. 4, left: The top variant decomposes the
reaction time worst-case assumption into another worst-case assumption about follower
computation time, but makes the communication delay dynamic so that the platoon can
adapt to different situations. The other example induces variants on the safety demand
bound for the provided leader speed leading to different performance guarantees for the
overall platoon since the safe distance computation still considers the situation-specific
worst-case.

Information Abstraction. The last property that distinguishes a design-time DDI from
a runtime DDI is the amount of incorporated information. After modularizing the CPS
safety concept into black-box system safety concepts with defined interfaces, each truck
manufacturer can certify their implementation including all pre-engineered variants con-
ditionally at design-time. Thus, runtime DDIs contain only the information required to
reason about variable safety conditions dynamically at runtime. These conditions are
a) a representation of the service interface with its safety guarantees and demands, b)
a system-internal mapping of safety guarantees and their required safety demands, and
c) context variable requirements for monitoring regarding their concrete equivalence
classes. In addition to the above, a runtime DDI also requires mechanisms for safety
interface matching, variant resolution, and runtime context monitoring.

ConSerts. Conditional Safety Certificates (ConSerts) [1] is a concrete instance of a run-
time safety assurance approach that unifies all above explained solution building blocks
for CPS safety assurance. ConSerts support open context in that they use a black-box
service architecture to achieve modularity. Through ConSerts, provided and required
functional services are enriched with safety guarantees and safety demands defining a)
formalized failure modes along with variable bounds to be assured for them, b) context-
specific constraints such as situation, for which these bounds have to be valid and c) an
integrity statement indicating the confidence required for the assurance of the bounds.
ConSerts support adaptivity in that they allow to define a) different safety guarantees
and demands for a single service and b) monitored context properties to provide run-
time evidences. ConSerts support information abstraction through the usage of Boolean
logic for expressing safety guarantee/demand and runtime evidence relationships thus
abstracting the design-time safety concept to the mere dependency logic being relevant
at runtime.

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 15

Platooning Runtime DDIs. Figure 5 shows runtime DDIs for the leader and follower
platoon trucks. They contain the service interface, its safety guarantees (SG), safety
demands (SD) and required runtime evidences (RtE). The “Safe Truck Platooning”
service can be guaranteed by the follower truck with high quality (=small truck dis-
tance, SG1), if the communication delay does not exceed a certain quality bound and
the follower speed can be determined with the required confidence (RtE1,2). In addi-
tion, deviations of the provided leader speed bound to max 2 km/h are demanded from
the leader truck to fulfill SG1. One potential realization of SG4 is to employ diverse
redundancy regarding the measurement principle of the leader’s speed (RtE3,4). If RtE
3 cannot be provided anymore due to e.g. ESP system failure, graceful degradation is
triggered through ConSert evaluation in that only SG2 can be guaranteed given that RtEs
1, 2 and 4 are still existent. This leads to a softer safety demand to the leader (SD2) yet
still better performance than deactivation of the cooperation. In this way, ConSerts allow
the definition and dynamic negotiation of arbitrary degradation level variants between
themaximum (SG1) and no performance (SG3,6), while always guaranteeingCPS safety
in a modular fashion during CPS cooperation.

Follower Truck Run me DDI

SG1 High quality Safe Truck
distance is not violated

during Platooning.

Context
Monitor

SD1 Too High Leader
Speed DeviaƟon is
bound to 2km/h.

RtE1 CommunicaƟon
Delay bound to < 300ms

SG2 Medium Quality Safe
Truck distance is not

violated during Platooning.

SG3 No safe
platooning
possible.

SD2 Too High Leader
Speed DeviaƟon is
bound to 4km/h.

& &

Leader Truck Run me DDI

SG4 Too High Speed
DeviaƟon is bound to

2km/h.

Context
Monitor

RtE3 Speed
Measurement over ESP
wheel speeds healthy.

SG5 Too High Speed
DeviaƟon is bound to

4km/h.

SG6 No Safe
Speed

Provision

RtE4 Model-based
speed computaƟon over

engine speed healthy.

&Co
nS

er
t

Co
nS

er
t

Basic Service Speed Provision

Required Service Leader Speed Provision

Applica on Service Safe Truck Platooning

Integra on and Coopera on @Run me

RtE2 Follower Speed
DeterminaƟon healthy

Fig. 5. Platooning runtime DDIs and ConSerts for leader and follower trucks.

4 Related Work

In the SPES projects [11], the Open Safety Metamodel (OSM) enables modular, cross-
tool and cross-company safety certification. The OSM had a major influence on the
evidence formalization in design-time DDIs. The AMASS project focusses on organiz-
ing safety cases, formalized in the Common Assurance and Certification Metamodel

16 J. Reich et al.

(CACM) [12]. The CACM is an extension of the DDI’s Structured Assurance Case
Metamodel (SACM), in that it adds capabilities to model risk management standard
terminology. Integrating CACM in the DDI is ongoing work to extend the latter with
further formalization capabilities regarding concepts and terminology from dependabil-
ity standards as well as evidence management processes. In contrast, there are pure run-
time safety monitor approaches such as [13], which dynamically assess risk at runtime
and react appropriately. The DDI improves upon these works by seamlessly integrating
design-time safety assurance and runtime monitoring.

5 Conclusion and Future Work

In this paper, we described a continuous engineering method for safety assurance of
CPS-based functionality via ConSerts. Our method seamlessly integrates development
time and runtime assurance to provide safety claim confidence. The DDI dependability-
engineering framework in Sect. 2 unifies development time and runtime assurance arti-
facts in an integrated data store, the DDI. In Sect. 3, we executed the DDI engineering
workflow for a CPS-based platooning function, from use case description over inte-
grated development time assurance (HARA, functional analysis, safety analysis, safety
concept) to the derivation of modular safety concepts and ConSerts as fully formal run-
time safety models. The demonstration suggests that the DDI framework can bridge the
gap between established development time assurance practice and innovative runtime
assurance concepts for tackling uncertainties and unknowns of CPS at runtime. In the
future, we look to enrich runtime DDIs with probabilistic reasoning schemes to account
for uncertain perception at runtime. Dynamic Safety Management [14] is a promising
conceptual framework for runtime safety assurance, which we see as a roadmap for the
evolution of DDIs.

Acknowledgment. This work was funded by the DEIS Project (EC Grant 732242).

References

1. Schneider, D.: Conditional safety certification for open adaptive systems. Dissertation,
Technical University of Kaiserslautern, Germany (2014). ISBN 978-3-8396-0690-2

2. Schneider, D., et al.: WAP: digital dependability identities. In: Proceeding of IEEE
International Symposium on Software Reliability Engineering (ISSRE), pp. 324–329 (2015)

3. DEIS Consortium: Dependability engineering innovation for cyber-physical systems project
dissemination. http://www.deis-project.eu/dissemination/. Accessed 21 May 2019

4. Reich, J., Zeller, M., Schneider, D.: Automated evidence analysis of safety arguments using
digital dependability identities. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFE-
COMP 2019. LNCS, vol. 11698, pp. 254–268. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26601-1_18

5. Kabir, S., et al.: A runtime safety analysis concept for open adaptive systems. In: Papadopou-
los, Y., Aslansefat, K., Katsaros, P., Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842,
pp. 332–346. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32872-6_22

6. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable
self-driving cars. Intel/Mobileye (2017). http://arxiv.org/pdf/1708.06374v5

Engineering of Runtime Safety Monitors for Cyber-Physical Systems 17

7. Reich, J., Schneider, D.: Towards (semi-)automated synthesis of runtime safety models: a
safety-oriented design approach for service architectures of cooperative autonomous systems.
In: Proceeding of 13th International Workshop on Dependable Smart Embedded and Cyber-
physical Systems and Systems-of-Systems (DECSOS), Västerås, Sweden (2018)

8. Adler, R., Schneider, D., Höfig, K.: Evolution of fault trees from hardware safety analysis to
integrated analysis of software-intensive control systems. In: Proceeding of 27th European
Safety and Reliability Conference (ESREL), Portoroz, Slovenia (2017)

9. Kelly, T.,Weaver,R.: Thegoal structuringnotation - a safety argument notation. In: Proceeding
of the Dependable Systems and Networks Workshop (2004)

10. Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R.: Model-based system assurance using the
structured assurance case metamodel. J. Syst. Softw. 154, 211–233 (2019). https://doi.org/10.
1016/j.jss.2019.05.013

11. Pohl, K., Hönninger, H., Achatz, R., Broy, M. (eds.): Model-Based Engineering of Embedded
Systems – The SPES 2020 Methodology. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34614-9

12. de la Vara, J.L., et al.: Model-based specification of safety compliance needs for critical
systems: a holistic generic metamodel. Inf. Softw. Technol. 72, 16–30 (2016)

13. Eggert, J.: Predictive risk estimation for intelligent ADAS functions. In: IEEE 17th
International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China
(2014)

14. Trapp, M., Schneider, D., Weiss, G.: Towards safety-awareness and dynamic safety man-
agement. In: 14th European Dependable Computing Conference (EDCC), Iasi, Romania
(2018)

